

The Role of Innovative Methods in the Development of Steam Education in Pedagogical Higher Education

Sobirov Avazbek Abidjonovich

*Andijan State Pedagogical Institute, Department of Physics and Technological Education
Associate Professor*

Abstract. *This article presents an in-depth analysis of the scientific and theoretical foundations of innovative methods in the development of STEAM education (Science, Technology, Engineering, Arts, Mathematics) in higher pedagogical education. It explores the conceptual and theoretical bases of STEAM, the application of modern teaching methods in the educational process, and the conditions necessary for their effective implementation. The study also examines national and international experiences in fostering creativity, critical thinking, and practical skills among students through innovative approaches. The research findings confirm that STEAM education significantly enhances student engagement and competency development in pedagogical contexts.*

Key words: *STEAM education, innovative methods, higher pedagogical education, constructivism, project-based learning, problem-based learning, gamification, interdisciplinary integration, student competencies.*

The global education system of the 21st century sets itself the task of ensuring that each person not only acquires knowledge and information, but also applies knowledge in practice, develops new solutions based on existing knowledge, and forms comprehensive integrated and systematic thinking skills. To this end, the emergence of new paradigms in education is observed in the modern world, among which STEAM (Science, Technology, Engineering, Art, Mathematics) education stands out for its relevance and practical value. According to scientific sources, STEAM education is an innovative educational model that ensures interdisciplinary integration and is aimed at developing students' life problem-solving skills, which serves to form independent thinking, a creative approach, and teamwork.

The pedagogical higher education system should be at the center of these changes and ensure the professional training of future teachers in accordance with the requirements of the time. The introduction of the STEAM concept in higher education is a key factor in improving the quality of education, developing high-level metacognitive skills in students, and educating a socially active person. From the point of view of the natural human thinking system, a person does not receive knowledge and skills in a ready-made form, but independently discovers them based on activity and experience (Vygotsky, 1978; Piaget, 1972). The STEAM approach corresponds to this natural process of acquiring knowledge, allowing education to be enriched with practice and experience.

Also, based on constructivist learning theory, the STEAM model encourages students to solve problems, develop new ideas, and justify their own independent thinking. This approach, in turn, develops students' competencies in critical thinking, systematic analysis, comprehensive problem-solving, and social collaboration. Modern scientific research shows that by integrating interrelated subjects, students' academic achievement increases, their innovative problem-solving skills are strengthened, and the acquisition of new knowledge is accelerated (Honey, Pearson, &

Schweingruber, 2014). This is especially important in higher education institutions that train teachers, since teachers working in modern schools must have advanced pedagogical technologies and integrated interdisciplinary knowledge. Experience shows that, instead of being limited to traditional methods of providing knowledge to students, it is necessary to consolidate their knowledge through methods such as activity-based learning, design thinking, project-based learning. Also, the effectiveness of STEAM education will increase further by incorporating digital technologies, AR/VR systems, and simulation models into the educational process. Such changes will fundamentally change not only the content of education, but also the teaching methods, assessment criteria, and requirements for learning outcomes.

Literature analysis. According to scientific sources, the main concept of STEAM education is based on the integration of natural and exact sciences (mathematics, biology, physics, chemistry), technology and engineering knowledge with elements of art and design (Yakman, 2008). In the process of such integration, students develop not only theoretical knowledge, but also practical skills such as analyzing real-life problems, developing solutions, creating prototypes, and conducting experiments. For example, by combining engineering and technology with art, students learn to create new design products and develop technical projects based on mathematical modeling.

Beers, SZ "STEAM education is an approach that focuses on developing students' core competencies such as critical thinking, problem solving, creativity, collaboration, and communication"¹. This concept, developed by Beers, clearly expresses the methodological essence of STEAM education. According to it, in preparing personnel suitable for modern society, it is not enough to simply provide knowledge, but it is important to form a complex set of student competencies. STEAM methodology helps to develop not only academic knowledge, but also skills such as an approach to solving life problems, the development of analytical and creative thinking, teamwork, cooperation and effective communication. This approach is especially relevant for the pedagogical higher education system.

Yakman, G. "STEAM is the idea of combining the exact and natural sciences, engineering, technology, and the arts into a single educational model."² Yakman (2008) developed the theoretical foundations of STEAM education and put forward the idea of basing the educational process on interdisciplinary integration. He believes that by combining art with other technical and natural sciences, students acquire not only specific knowledge, but also important skills such as design, aesthetic thinking, and innovative thinking. This approach prepares students not only to solve problems, but also to develop new designs and solutions.

Piaget, J. "Knowledge is not given to a person in a ready-made form, it is created independently on the basis of activity, experience and testing." Piaget is known as the founder of the constructivist approach, who scientifically substantiated the development of human thinking through gradual and practical activities. The STEAM concept is also based on the student's activity, independent experience, analysis, synthesis and the desire to find practical solutions. This theory of Piaget is the core of the STEAM approach.

Vygotsky, LS "Collaboration between teacher and student is the most effective form of acquiring knowledge."³ Based on the theory of the zone of proximal development, emphasized by Vygotsky, the role of cooperation in the development of the individual is recognized as incomparable. This approach is reflected in the STEAM methodology. It is based on this theory that students work on team projects, exchange experiences, and discover new knowledge in a collaborative learning environment.

Anderson, LW, "A systematic model of learning that includes the stages of recall, comprehension, application, analysis, synthesis, and evaluation is necessary for deep knowledge

¹Beers, SZ (2011). 21st Century Skills: Preparing Students for Their Future. Bloomington, IN: Solution Tree Press. - page 45.

²Yakman, G. (2008). STEAM Education: An Overview of Creating a Model of Integrative Education. Virginia Polytechnic Institute and State University. - page 28.

³Vygotsky, LS (1978). Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press. - page 86.

acquisition.”⁴ Anderson and Krathwohl (2001) developed a more accurate and effective assessment system for learning outcomes by improving Bloom's taxonomy. STEAM education is based on this model. Students are not limited to memorizing information, but also go through the stages of analyzing, applying it to new situations, and evaluating it. This develops independent and critical thinking.

Kapp, KM “Incorporating game elements into the educational process is a very effective tool for increasing student motivation and engagement.”⁵ Kapp is one of the scientists who introduced the concept of gamification into the pedagogical process. He believes that through game elements, students become more actively involved in the learning process, making the process lively and interesting. This approach is widely used in STEAM education to increase student motivation, focus, and ensure efficiency.

Honey, M., Pearson, G., & Schweingruber, H. “STEAM approaches provide opportunities to develop students' metacognitive capacity, problem-solving skills, and creative thinking.”⁶ Honey, Pearson, and Schweingruber have demonstrated in their research how effective STEAM methodologies are in school and higher education, developing high levels of metacognitive skills, innovative thinking, and independent problem-solving skills in students. Their analysis emphasizes the interactivity and effectiveness of the educational process through an interdisciplinary approach.

Tursunov, MQ “The STEAM approach helps students develop important competencies such as hands-on learning, analytical thinking, and independent decision-making.”⁷ In his scientific work, Tursunov substantiated the role of the STEAM approach in the formation of competencies in pedagogical higher education. According to him, students master the processes of solving complex problems, creating prototypes, and thinking based on design based on interdisciplinary integration. Tursunov emphasizes that through this methodology, a scientific and theoretical basis is being created for the transition of the higher education system of Uzbekistan to an innovative educational strategy.

The STEAM approach also serves to develop knowledge levels sequentially based on Bloom's taxonomy: through the stages of remembering, understanding, applying, analyzing, synthesizing, and evaluating, students acquire independent and critical thinking (Anderson & Krathwohl, 2001). Modern pedagogical research emphasizes that the STEAM methodology has a positive effect on the development of students' metacognitive potential, directing them to manage their own cognitive processes, choose their own thinking strategies, and learn independently. Analyzing the natural human thinking process, it can be said that a person acquires his knowledge through consistent, step-by-step, and experiential activities. In this sense, the STEAM model corresponds to the laws of natural human knowledge acquisition, since in it the student is formed not only as a passive learner, but also as an active participant, problem solver, developer of new ideas in thought and practice. Therefore, in-depth study of the scientific and theoretical foundations of STEAM education in pedagogical higher education, its effective integration into the modern educational process, as well as its improvement based on national and international experience, is one of the important factors in the quality of education and training of competitive personnel. This process covers not only the content of education, but also factors such as the organization, assessment, monitoring and enrichment of the pedagogical process with innovative methods.

Research methodology. Modern pedagogical experience shows that in order to effectively integrate STEAM education into the pedagogical higher education process, it is necessary to widely use innovative teaching methods and technologies, in addition to traditional teaching methods. Such methods serve to form students as active participants, independent thinkers, collaborators and creative

⁴Anderson, LW, & Krathwohl, DR (2001). A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. New York, NY: Longman. - page 78.

⁵Kapp, KM (2012). The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education. San Francisco, CA: Pfeiffer. - page 53.

⁶Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM Integration in K–12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: National Academies Press. - page 119.

⁷Tursunov, MQ (2023). The role of innovative methods and the STEAM approach in pedagogical education. Andijan: Andijan State University Publishing House. – p. 89.

individuals. As emphasized in the scientific literature, innovative methods not only provide knowledge, but also develop the skills of applying it in practice, processing and analyzing knowledge in a new context.

One of the most effective methods for the STEAM approach in pedagogical higher education institutions is Project-Based Learning. Project-based learning gives students the opportunity to independently solve real-life problems. For example, engineering and technology students can participate in projects to design energy-efficient devices or create digital platforms for environmental problems. In this process, they not only apply theoretical knowledge to practice, but also develop important life competencies such as teamwork, leadership, communication, and responsibility.

Collaborative learning methods are also important for STEAM education. In this approach, students work in small groups, each participant shares their experiences, knowledge, and ideas with the team, trying to find a common solution. Research shows that collaborative learning increases student motivation, helps to deepen understanding, and reinforces knowledge.

Problem-Based Learning encourages students to independently find solutions to specific problems, ask questions, and think critically. This method encourages students to discover new things and form new perspectives through practical projects and tasks in the STEAM field. Design Thinking is also an extremely effective tool for students, which is used in the process of creating innovative products or solutions. Students go through the stages of identifying a problem, developing a solution concept, preparing a prototype, and testing it in practice.

Enriching the educational process with modern technologies is also an important aspect of the STEAM approach. With the help of digital tools, virtual laboratories, AR/VR technologies, 3D modeling, simulation and visualization tools, the learning process of students becomes more interactive and interesting. These tools not only facilitate the understanding of the educational material, but also increase the potential of students to develop new ideas and propose innovative solutions.

Gamification (the introduction of game elements into the educational process) is also effective in motivating students and increasing their interest in the educational process. Kapp (2012) emphasized the strong impact of gamification on psychological motivation in education and scientifically substantiated the increase in the level of activity, interest and participation of students through game elements. Based on the natural human thinking process, a person relies on practice and activity in the process of acquiring new knowledge, tests his existing knowledge in a new context and creates new knowledge. The essence of STEAM innovative methods is to organize this process in the educational process, encouraging students to abandon only receiving ready-made knowledge, but to acquire knowledge based on active research, analysis and experience.

Thus, the implementation of innovative methods based on the STEAM approach in pedagogical higher education institutions will not only make the educational process interactive and effective, but also help form a set of modern competencies in future teachers. This, in turn, will ensure an increase in the quality of education and the effectiveness of the process of training highly qualified and competitive pedagogical personnel.

Research results. Successful implementation of STEAM education in pedagogical higher education institutions and increasing its effectiveness requires the creation of a number of important conditions. Scientific literature and experience show that for education to achieve high results, active cooperation between all participants in the educational process - teachers, students and administrators, modern infrastructure and methodological support are necessary.

First of all, for the successful implementation of STEAM education, educational institutions must be equipped with modern material and technical resources, interactive laboratories, computer classes, digital technologies, advanced devices such as virtual and augmented reality (VR/AR) systems, 3D printers, drones, microcontrollers. Such modern tools allow students to conduct experiments, make models, test complex problems in practice, and develop their independent and creative thinking. For

example, with the help of 3D modeling or VR simulations, students can visually learn difficult concepts, explore complex processes, and test their ideas in practice.

The second aspect is to pay special attention to improving the qualifications and competence of teachers. A modern teacher, especially a specialist working in the STEAM direction, is required to be well-versed not only in his field of study, but also in advanced approaches such as integrated interdisciplinary educational methodology, digital technologies, innovative methods, project-based learning, problem-based learning. The results of scientific research show that special trainings for teachers, seminars, advanced training courses, platforms for mutual exchange of experience, and mentoring programs significantly increase efficiency.

The third important factor is the correct planning and management of the educational strategy. The effectiveness of STEAM education is ensured by designing the educational process, clearly defining assessment criteria, monitoring student activity, constantly analyzing effectiveness and introducing mechanisms for improving results. It is very important to adapt the educational process to the natural human thinking process: the student must not only memorize information, but also master the stages of analysis, application, evaluation and development of new knowledge.

It is also recommended to widely introduce active learning forms such as gamification, competitions, projects, hackathons, and problem-solving tasks to encourage students to participate actively and increase their motivation. These methods make the learning process lively, interesting, and meaningful, and develop personal responsibility, independence, and innovative thinking skills in students.

Thus, in order to increase the effectiveness of the STEAM approach in the pedagogical higher education system, it is important to provide modern technical means, create conditions for the continuous development of teachers, adapt the educational process to the natural laws of human thinking, and increase the motivation of students to actively participate and seek practical knowledge. Only when these conditions are systematically implemented will pedagogical higher education institutions be able to train pedagogical personnel who meet modern requirements, who think creatively and innovatively.

Conclusion.Based on the above scientific analysis and practical experience, it can be concluded that the introduction of STEAM education in pedagogical higher education institutions will not only improve the quality and efficiency of the teaching process, but also help the future generation to become creative, independent, critical thinkers and competitive individuals who are ready to actively participate in society. The STEAM approach is implemented in the pedagogical process through the perfect combination of constructivism, activity-based learning, a systematic approach and interdisciplinary integration. This fully corresponds to the natural laws of human knowledge acquisition: a person acquires new knowledge through activity and experience, processes existing information and discovers new knowledge by applying it in new contexts (Piaget, 1972; Vygotsky, 1978).

List of used literature

1. Anderson, LW, & Krathwohl, DR A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. New York, NY: Longman. 2001. 352 pages.
2. Beers, SZ 21st Century Skills: Preparing Students for Their Future. Bloomington, IN: Solution Tree Press. 2011. 217 pages.
3. Honey, M., Pearson, G., & Schweingruber, H. STEM Integration in K–12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: National Academies Press. 2014. 198 pages.
4. Kapp, KM The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education. San Francisco, CA: Pfeiffer. 2012. 336 pages.
5. Piaget, J. The Psychology of the Child. New York, NY: Basic Books. 1972. 246 pages.

6. Vygotsky, LS *Mind in Society: The Development of Higher Psychological Processes*. Cambridge, MA: Harvard University Press. 1978. 159 pages.
7. Yakman, G. *STEAM Education: An Overview of Creating a Model of Integrative Education*. Virginia Polytechnic Institute and State University. 2008. 36 pages.
8. Karimov, BB *Innovative methods in pedagogical education and scientific and theoretical foundations of the STEAM approach*. Tashkent: Uzbekistan Pedagogical Publishing House. 2021. 160 pages.
9. Abdullayeva, N. Sh. *Integrated approaches to STEAM methodology in higher education*. Samarkand: SamSU Publishing House. 2022. 185 pages.
10. Tursunov, M.K. *The role of innovative methods and the STEAM approach in pedagogical education*. Andijan: Andijan State University Publishing House. 2023. 142 pages.
11. Jonassen, DH *Designing Constructivist Learning Environments*. Mahwah, NJ: Lawrence Erlbaum Associates. 19990. 287 pages.
12. Bell, S. *Project-Based Learning for the 21st Century: Skills for the Future*. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 2010. 83(2), 39–43.
13. Darling-Hammond, L., et al. *Empowered Educators: How High-Performing Systems Shape Teaching Quality Around the World*. San Francisco, CA: Jossey-Bass. 2017. 304 pages.
14. Johnson, DW, Johnson, RT, & Smith, K. *ACooperative Learning Returns to College: What Evidence Is There That It Works?*. Change: The Magazine of Higher Learning, 1998. 30(4), 26–35.