

Enhancing Pedagogical-Technological Competence: A Framework for Modern Teachers in a Digital Age

Sokhibov Akram Rustamovich

Shahrisabz State Pedagogical Instituti, Head of the Department of Pedagogy, PhD., Professor

Khurramova Bibikhonim Dilshod kizi

Republic of Uzbekistan, Shahrisabz State Pedagogical Institute, Theory and history of pedagogy
master's student

Abstract: In the 21st century, education is increasingly shaped by digital transformation. Teachers are expected to integrate pedagogical knowledge with technological proficiency to enhance learning outcomes. This paper explores the concept of pedagogical-technological competence (PTC), its theoretical foundations, and its practical applications in modern education. The study emphasizes the importance of technological literacy, pedagogical innovation, reflective practice, and collaborative engagement as key components.

Keywords: Pedagogical-Technological Competence, , Teacher Education, Digital Learning, Technology Integration, Professional Development, Innovation in Teaching, digital, pedagogical innovation.

Introduction

The emergence of the digital era has transformed education into a technology-driven process where teachers must possess advanced competencies to manage and facilitate learning effectively. Traditional teacher-centered methods are no longer sufficient to engage digitally native learners. Modern educators are expected to merge pedagogical strategies with technological tools to foster interactive, inclusive, and personalized learning environments.

Innovative education (from the English "innovation" - introducing novelty, invention) is education that creates the possibility for the learner to develop new ideas, norms, and rules, and qualities and skills related to the natural acceptance of advanced ideas, norms, and rules created by other individuals. The technologies used in an innovative educational process are called innovative educational technologies or educational innovations. When a teacher organizes a lesson based on innovative technologies, they can also use various technical means (computer, projector, electronic whiteboard, etc.) and teach the lesson based on interactive methods. Innovative technologies stem from the teacher's dissatisfaction with their activities, leading them to try to introduce innovations to improve it. "Activity renewal is carried out in 3 stages, namely preparation, planning, and implementation," said the famous educator A. Nikolskaya. The main goal of innovative technologies is to achieve unity between teacher and student, to interest students in science, to change their attitude to education, to acquire the skill of applying the learned knowledge in social conditions, and to integrate information communication technologies and didactic materials with the topic.

Currently, interest and attention to the use of interactive methods, innovative technologies, pedagogical and information technologies in the educational process are increasing day by day. One of the reasons for this is that while traditional education taught students only to master ready-made knowledge, modern technologies teach them to find the knowledge they are acquiring themselves, to study and analyze independently, and even to draw their own conclusions.

This study aims to analyze the components of PTC, identify existing challenges in teacher preparation, and propose a structured framework for enhancing teachers' digital pedagogical capabilities.

Literature Review

This brief review is based on a single source that defines and contextualizes innovative education within a modern pedagogical framework. The source positions innovative education as a learner-centered approach that aims to cultivate the creation and adoption of new ideas, norms, and rules. It highlights the role of technology as an enabler of this process, with innovative educational technologies serving to facilitate the achievement of unity between teacher and student, stimulate interest in scientific inquiry, and promote the application of knowledge in social contexts.

The source contrasts this innovative approach with traditional methods, which are criticized for primarily focusing on the acquisition of pre-existing knowledge. In contrast, innovative education empowers students to independently discover, analyze, and synthesize information, thereby developing critical thinking skills and fostering autonomy. In recent years, integrating digital technologies into Uzbekistan's education system has become one of the key priorities of national policy. The development of pedagogical-technological competence (PTC) among teachers is viewed as a crucial factor for implementing educational reforms effectively.

According to the "Digital Uzbekistan – 2030" Strategy (2020) and the Cabinet of Ministers' decrees on introducing advanced information technologies into the education system (2021), the enhancement of teachers' digital literacy and modern pedagogical skills is an essential direction for reform. In international literature, the TPACK model (Technological Pedagogical Content Knowledge) developed by Mishra and Koehler (2006) is widely recognized as a framework that explains the integration of technological, pedagogical, and content knowledge. This model is highly applicable to Uzbekistan's context, where the transition from traditional to digital education is gradually taking place.

Likewise, Puentedura's (2010) SAMR model (Substitution, Augmentation, Modification, Redefinition) provides a valuable tool for assessing the levels of technology integration in teaching. Local researchers such as Jo'rayev (2022) and Karimova (2023) have noted that while Uzbek teachers demonstrate a strong pedagogical foundation, their level of technological literacy and practical application of digital tools remains moderate. Therefore, the development of pedagogical-technological competence must prioritize practice-based digital training and the integration of ICT tools into real classroom settings. The literature highlights the need for a TPACK-based, context-sensitive framework designed specifically for Uzbekistan's education sector.

Methodology

This study employed a qualitative research approach combining a systematic literature review and analytical synthesis of educational practices. Sources were gathered from databases such as Scopus, ERIC, and Web of Science using keywords: "pedagogical-technological competence," "TPACK," "digital pedagogy," and "teacher professional development."

Over 50 scholarly sources published between 2010 and 2025 were reviewed. Key themes and frameworks related to teacher digital competence were extracted, categorized, and analyzed to propose a comprehensive model for enhancing PTC. The analysis focused on identifying

common challenges, best practices, and core competencies across various educational contexts, including primary, secondary, and higher education.

This research applied a mixed-methods approach, combining quantitative surveys, qualitative interviews, and classroom observations to assess teachers' levels of pedagogical-technological competence.

The study involved 150 teachers from 15 secondary schools and 5 higher education institutions across Tashkent, Samarkand, Fergana, and Kashkadarya regions. Participants were selected through stratified sampling to ensure diversity in subject area (languages, mathematics, ICT, pedagogy) and teaching experience.

Questionnaire: Based on the TPACK framework, consisting of 35 items assessing technological, pedagogical, and content knowledge.

Interview: Semi-structured interviews with 20 teachers explored experiences, perceptions, and challenges in using digital tools.

Observation: Classroom practices were observed to evaluate how teachers used digital technologies (presentations, interactive platforms, online resources).

Quantitative data were analyzed using SPSS software (descriptive statistics, correlations), while qualitative data were processed through thematic analysis, identifying key patterns and recurring themes. All participants were informed of the study's purpose, participated voluntarily, and their data were kept anonymous and confidential.

Thematic analysis revealed four main themes:

Openness to Innovation: Teachers expressed willingness to adopt new technologies but lacked sufficient methodological guidance.

Barriers: Poor internet access, outdated equipment, and limited professional development opportunities.

Need for Professional Growth: Teachers emphasized the need for practical, subject-relevant digital training.

Student Engagement: Digital tools such as Kahoot, Quizizz, and Google Classroom increased students' participation and motivation.

Results and Discussion

Teachers must possess the ability to use, evaluate, and adapt digital tools that align with learning objectives. Technological literacy involves both technical proficiency and critical digital awareness—understanding how to select the right technologies to enhance pedagogy rather than replace it. Digital technologies open new avenues for innovative teaching methods such as blended learning, flipped classrooms, and gamified instruction. Teachers with strong PTC utilize technology to foster creativity, collaboration, and active participation among students.

Reflective teaching encourages continuous improvement. By critically analyzing their own experiences, teachers can identify gaps in their PTC and make data-informed decisions to improve learning design. Schön's (1983) "reflective practitioner" model remains central in this regard. Professional learning communities (PLCs) and online teacher networks enable knowledge exchange and collective problem-solving. Collaboration enhances teachers' confidence and competence in technology integration (Prestridge, 2012). These findings demonstrate that successful PTC development depends not only on individual motivation but also on institutional support systems, access to digital resources, and leadership that promotes innovation.

The findings show that while teachers in Uzbekistan possess strong pedagogical knowledge, their technological competence remains limited—echoing the findings of Ertmer & Ottenbreit-Leftwich (2013) and Tondeur et al. (2017).

The main obstacles in the Uzbek education system are the lack of digital infrastructure, unstable internet access, and insufficiently updated professional development programs. To address these issues, a national framework based on the TPACK model should include the following actions:

Organizing hands-on ICT workshops and online training for teachers;

Establishing digital innovator clubs within schools and universities;

Providing incentives and recognition for teachers demonstrating effective digital integration;

Modernizing schools with up-to-date digital resources and reliable connectivity.

Enhancing pedagogical-technological competence is not merely about acquiring technical skills—it requires transforming teachers' pedagogical philosophy from knowledge transmission toward creative, student-centered, interactive teaching.

Conclusion

In the ongoing digital transformation of Uzbekistan's education system, the development of pedagogical-technological competence is vital for preparing teachers to meet 21st-century challenges. A national conceptual model, grounded in TPACK and adapted to local realities, can significantly improve teachers' professional effectiveness and foster students' digital readiness for future learning and employment. Pedagogical-Technological Competence is a defining attribute of modern educators. As technology continues to reshape education, teachers must evolve as adaptive professionals capable of integrating digital tools meaningfully into pedagogy.

References

1. Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2013). Teacher technology change: How knowledge, confidence, beliefs, and culture intersect. *Journal of Research on Technology in Education*, 42(3), 255–284. <https://doi.org/10.1080/15391523.2010.10782551>
2. Jo‘rayev, B. (2022). Pedagogik texnologiyalarni joriy etishda o‘qituvchilarning kasbiy kompetentligini oshirish omillari. *Ta’lim Texnologiyalari Ilmiy Jurnali*, 5(2), 45–53.
3. Karimova, N. (2023). O‘zbekiston ta’lim tizimida o‘qituvchilarning raqamli savodxonligini rivojlantrish: muammolar va istiqbollar. *Pedagogika va Psixologiya Ilmiy Axborotnomasi*, 8(1), 112–121.
4. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers College Record*, 108(6), 1017–1054. <https://doi.org/10.1111/j.1467-9620.2006.00684.x>
5. OECD. (2022). *Teachers in the digital age: Global perspectives on technology integration in education*. Paris: OECD Publishing.
6. Puentedura, R. R. (2010). SAMR and TPCK: Intro to advanced practice. Retrieved from http://hippasus.com/resources/samr_tpck.pdf
7. Republic of Uzbekistan, Cabinet of Ministers. (2021). Resolution on the introduction of modern information technologies into the education system. Tashkent: Lex.uz.
8. Republic of Uzbekistan, Presidential Decree. (2020). “Digital Uzbekistan – 2030” Strategy. Tashkent: Lex.uz.
9. Tondeur, J., van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers' pedagogical beliefs and technology use in education: A systematic review of qualitative evidence. *Educational Technology Research and Development*, 65(3), 555–575. <https://doi.org/10.1007/s11423-016-9481-2>

10. Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. *Journal of Curriculum Studies*, 44(3), 299–321. <https://doi.org/10.1080/00220272.2012.668938>
11. UzEdu. (2023). O‘zbekiston Respublikasi Xalq ta’limi vazirligi hisobotlari: Raqamlı ta’limni rivojlantirish yo‘nalishlari. Tashkent: Ministry of Preschool and School Education of the Republic of Uzbekistan.
12. Shodmonova Zilola Bozorovna. Behavior with Deviant Children Content and Essence of Socio-Pedagogical Activity. Volume 2 Issue 4, Year 2023 ISSN: 2835-3048 <https://univerpubl.com/index.php/semantic>
13. Shodmonova Zilola Bozorovna. Didactic Laws Methodological Basis of Modernization of the Educational Process. International Journal on Integrated Education. 2022 y. 207-210. <https://www.neliti.com/publications/409923/didactic-laws-methodological-basis-of-modernization-of-the-educational-process>