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Abstract:

The distribution of the normal sum the Gilbert phase is described to be explored to a normal
distribution of normal distribution.
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Introduction

Let's say in the Gilbert space X;, X,..., X, - let the random quantities that have a Puasson

distribution are given, that is, Q=10,1, 2""}, P=1i0,0,.} s

—-a X
e‘a
;o x=0,1,...
x! a>0 or
1

=n 2(X,+ X, +...+ X,)

p(x)= Mx,=a

2

It is known that M||xn ” < OO, in that case "
the distribution of the normal sum will approach a normal distribution in Gilbert space. This article
shows to study the speed of approaching.

Z = nIJ‘{Zn:p(x+xi)—h} dx

oL =l

(1)
let's enter a definition. Z, random quantities in the form of (1) are studied in [1].
If

E(x) = plx+x)-1
If we enter, then
E@+E@++E@
| Jn ||

Z,4n|=

we'll have. Here
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1 p(x) [I= [ | p2<x)dx]

It is also an empirical X, (x) = \/;(Fn (x) =) process and the F,(x) - the empirical distribution
function, based on the sale of x;,x>, ...,x, the Puasson process. Covera function

cosz(l-x) , 0<z<x<I
let there be a sort of. [2] na n—>c0 na

The amount is shown to 0. It is a distribution function of P(4), its characteristics function
1

p() =] ]2 4ir) "
P A3)
equal to function. A sequence A;=>422... of numbers to decrease here.
Say
| P'(x)[<c )
Let there be a sort of. Here ¢ positive number
The theorem 1. For adequate large n and all 4 >0

In
|8, (D)< C(H) 7 e
n
Inequality will be appropriate. Here it depends on the C(H).
Proven Z,

Z =\/;(12p(x+xi)—l} =\/;jp(x+u)—l) dF (1) =
n 0

= j(P(x +u)—1)dx, (u)

We write like. (3) and (1) from

z, =m(p(x+u>—l>dxn<u>} dx

we will have. According to the principle of invasion, Z,

Z = j‘ﬁ.(p(x+u) —l)dx(u)} dx

strives for.
Comlosh- Mayor Tushnadi [2] descends according to the traine (€2 F,P)

()
there is a distinctive space that is empirical for the optional # in this space *» (u) the process can
build the process and B,(#) Brown bridge. Voluntary x>0 for them

P(\/; sup | 3\ (u)- B, (u) |> x) <kne™
0<u<l (5)

Inequality will be appropriate. Here there are positive constant prime numbers of a,b,k.
we will enter the below
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VASE ID(P(X +u) —1)dy,(,1)(u)} dx, 2" = J.U(P(X +u)—1)dB, (U)} dx
olo oLo (6)
In that case
P(Z,<2)=P(Z" <), P(Z<A)=P(Z" < 1) %

from (6) using

zZW=z" +j‘ﬁ(f(x+u)—l)d(yfll)(x)—Bnu)} du+

1] 1 1
| { [ (e +w)=Dd (3 (x)-B, (x»)}x { [ £, +u)-1)aB, (xl)}du
0oLo 0
we will have. The elementary accidents set

0, = isup |10~ B, 1))

0<u<l (8)
If we can be (here x>0 optional number) © € Q, then for all
[ { [ +u>—1>d(yf,‘><x1>—B,,<xl))} dul <, 1]
n
0L 0 , (9)
2 { [0 +w)=Dd (5 (x)-B, <x1))} { [ (£, +w)-1)aB, (xz)]du} <C, 7' ‘
oLo 0 Jn (10)

Inequality will be appropriate.
(9) when we first applied (4), (8), after we first applied to the x; variable. In addition to the
formation of (10), we have applied Koshi-Bunyakovsky's inequality other than the above.

M _ 70
(9), are optional from  (10) weL2 for 1Zn" =20 IS4 (11)
2
SO BN
we create. Here n Jn

(11) according to
P(Z,<2)=P((2)" <2)nQ )+ PI" < )" Q)

(12)

we appreciate the second added accounting (5) on the right of (12).
P((2" <2)n0,)<P((2 < A+14)nQ,) 13
P((2" <2)n0 )< P((2" <2-1)ne) (14

(13) and from (14)

P(2)<2)n@Q)<P(20 <a+a,) (15)

P((Z" <2)ne)2 (2" <2-5,)-P(A)) (16)

we create inequalities. Here

2 2
a, :C3x—+2x\/§[x\/§+1//1+2x—cgl
n n n n

b
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B, :C3x—2+2x\/§{x/z x\/g}
n n n

x the fact that the voluntary value of the variable can be selected,
1 a+?2
xX=— \/Z + Inn
b b

can select as. In that case, an optional are 4 >0 in and adequate n large

Inn Inn
a, <CA—— CA—F—
Y ~

\/; 2
we create (6), (15), (16).
A, (A SP(T<A+a,)-P(T <A)+P(Q,)

(17)
A (A)=P(T<A-B)-P(T<A)-PQ))
we'll have. In view of the selected x and (5)
— 1
PQ)<C,~e
n (13)

Voluntary it is formed for u>0. (7) mainly

P'(u) < C7um°e_5
We create. Here's C7 and my - permanent numbers.
From the last inequality

|P(Z<A+a,)— P(Z<2.)|<C8 eV

f (19)

|P(Z<A-B)-P(Z<A)<C, RS

"Vn (20)

are formed.
(17) - (18), (19) from uniting (20)
e M T op < i Lo
n \/; In n Inequality

occurs. This proves that the theorem is true.
References

1. Beran R.J. Asimptotic theory of a class of tests for uniformity of a circular distiribution.
“Ann. Math Stat”, 1969, v 40, Ne 4, ¢ 1196-1206.

2. Komlos J., Major P., Jusnady G. An approximation of partial sums of inderpedent RV-s, and
the sampe D.F.J. “Z.W ahr. Verw. Geb”, 1975. B 32, ¢.111-131.

3. Vakhtiya N.N. Veriachostnostneie addresseleniya v lineynyx prostans. Tbilisi is
«Metsnierba», 1971.

36 Journal of Science on Integration and Human Development www. grnjournal.us



