

Plant Leaf Disease Detection Using Convolution Neutral Network

Nagoor Mydeen A

Bachelor of Engineering, Department of Computer Science and Engineering, Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India.

Shamir Ahmed

Bachelor of Engineering,

Department of Computer Science and Engineering, Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India.

Vasanth R

Bachelor of Engineering, Department of Computer Science and Engineering, Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India.

S. Manimaran

Assistant Professor,

Department of Computer Science and Engineering, Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India.

Abstract:

Plant diseases threaten global food security and agricultural productivity. Early and accurate detection of these diseases is crucial for effective disease management and mitigation. In recent years, convolutional neural networks (CNNs) have emerged as powerful tools for image analysis and pattern recognition. This study presents a plant disease prediction framework based on CNNs that can effectively identify and classify diseases in plant leaves. The proposed model leverages a large dataset of labelled plant images and employs transfer learning techniques to enhance its predictive capabilities. Experimental results demonstrate the effectiveness of the CNN-based approach, achieving high accuracy rates in disease identification across multiple plant species. The developed framework holds great promise for assisting farmers and agronomists in making timely and informed decisions for disease management, leading to improved crop health and increased agricultural productivity.

Keywords: Plant Leaf, Disease, Detection, Convolution Neutral Network, Tomato plants,

Introduction

In the context of document analysis and processing, CNN refers to Convolutional Neural Networks. Convolutional Neural Networks are a class of deep learning models widely used and highly successful in various computer vision tasks, including document analysis and understanding [6]. Document analysis involves extracting meaningful information and insights from various documents, such as text documents, images, scanned documents, handwritten notes, etc [7]. CNNs have shown great efficacy in handling document analysis tasks because they can automatically learn and extract hierarchical features from raw input data [8-12]. Here is an overview of how CNNs can be applied in the domain of document analysis:

Document Classification: CNNs can classify documents into different categories based on their content. For instance, they can be used to classify emails as spam or non-spam, categorize news articles into different topics, or identify the type of document (invoice, contract, report, etc.) [13-16].

Optical Character Recognition (OCR): OCR is a crucial task in document analysis that involves extracting text information from images or scanned documents. CNNs can be utilized to perform character recognition by learning to recognize patterns and shapes of characters within images. This enables the conversion of printed or handwritten text into machine-readable formats [17].

Document Segmentation: CNNs can assist in segmenting documents into different regions or sections. For example, they can separate text from images, identify headers and footers, or extract specific content such as tables, graphs, or diagrams. **Document Layout Analysis:** CNNs can be utilized to understand the layout and structure of documents. They can learn to identify headings, paragraphs, bullet points, and other formatting elements. This information can be useful for document summarisation, retrieval, or content extraction tasks [18-21].

Document Similarity and Clustering: CNNs can be employed to measure the similarity between documents or group similar documents together. By learning representations of documents, CNNs can capture semantic relationships and identify similar content across different document formats [22].

Handwriting Recognition: CNNs can be applied to recognize and interpret handwritten text within documents. This can be useful in tasks such as digitizing handwritten notes, processing forms with handwritten responses, or historical document analysis [23-26].

Objectives

Plant leaf disease detection using CNN aims to develop an accurate and reliable system that can automatically identify and classify diseases in plant leaves based on their visual characteristics. By leveraging the power of Convolutional Neural Networks (CNNs), the goal is to enable early detection and diagnosis of plant diseases, aiding farmers and researchers in effectively managing crop health and minimizing crop losses [27-31].

Scope of the Project

The project aims to develop a plant leaf disease detection system using CNN to accurately identify and classify plant disease. The scope includes creating a diverse dataset, designing and training a CNN model, implementing real-time disease detection, and developing a user-friendly interface for easy access. The system will focus on various plant species and common leaf diseases,

providing farmers and researchers with a reliable tool for early disease detection and crop management [32-37].

Project Goals

The project aims to develop an efficient and accurate plant leaf disease detection system using Convolution Neural Networks (CNN). The project aims to create a robust model capable of identifying and classifying diseases in plant leaves based on their visual characteristics. By achieving this goal, the project seeks to assist farmers and researchers in detecting plant diseases early, enabling timely interventions to prevent crop losses and promote sustainable agriculture practices [38-41].

Literature Survey

Most people in Bangladesh rely on farming and agricultural goods for their income. Tomatoes, which thrive in the mild climate here, have emerged as a major cash crop. If these diseases could be diagnosed sooner, people may take precautions to lessen the impact on their communities. Tomatoes have significant market demand and nutritional value, making them an essential crop. The tomato's popularity has increased because of its delicious and healthful qualities. Vitamins E, C, and Beta Carotene can all be found in abundance in tomatoes. Tomato plants are vulnerable to a variety of illnesses brought on by insects and other pests that prey on these antioxidants. Illnesses of tomato plants can only be correctly identified by hand if one is already familiar with those diseases. One potential flaw with this identification is that not everyone will be familiar with all of the signs of illnesses that can affect tomato plants. Each year, farmers face new challenges in their never-ending quest to grow abundant harvests. Insects and other pests pose a serious threat to our economy and, in particular, our farmers, by disrupting production and lowering yields. Despite widespread use of insecticides and pesticides, farmers' lack of awareness of tomato plant diseases and the protective measures that can be taken frequently leads to crop failure. Once again, our health and wellbeing are threatened by the careless application of pesticides and insecticides. Damage to crops can result from incorrect diagnosis of illnesses and the inappropriate use of insecticides. However, farmers sometimes lack access to professionals who can keep an eye on their crops, identify any signs of illness, and implement preventative measures such as applying the correct amounts of insecticides. Instead, keeping a close eye on the plants and identifying tomato illnesses by hand is a time-consuming and exhausting process. Again, it can be difficult for farmers to travel to far-flung centres of expertise in order to receive treatment for rare diseases [1]. Potatoes are a staple food in many parts of the world and are widely consumed by people everywhere. In this sense, potatoes can be seen as the progenitor of all vegetables. Bangladesh is an agricultural country that produces many various crops, the most important of which is potatoes. When it comes to potato production, Bangladesh ranks seventh worldwide. According to the Department of Agricultural Extension, potatoes are grown on about 5 million acres of land annually, with yields ranging from 0.70 to 1.09 million metric tonnes (DAE). Potatoes are vital to our national food security and agricultural economy. The key factor is increasing potato production as demand increases around the world and our region is obligated to export as much as it can. However, due to major diseases of potato leaves such as early blight, late blight, Brown spot, bacterial wilt, septoria blight, etc. [2], the export and production level has been dropping in recent years.

If that happens, productivity will suffer significantly. The farmers are also bearing a heavy burden because of this. The potato leaf will sometimes show signs of the illness. The plant's leaf may

occasionally get a spot or two as well. Brown spots, early blight, and late blight are just a few examples of illnesses that manifest in a wide variety of sizes, shapes, and colours. All affected plant portions will show signs of bacterial wilt. Septoria leaf spot manifests on leaves as a grey mark with a black edge. Early and late blight are two of the most frequent potato diseases. Small, black lesions are the most common early blight sign, but late blight symptoms include blistering similar to those caused by scalding hot water, followed by rotting and drying out. Farmers will greatly benefit from the availability of a deep learning model that can tell the difference between healthy and diseased potato leaves. Due to the visual nature of this research, a sizable image dataset is necessary. There are three distinct processed image options. You can categorise them as either early blight, healthy, or late blight. Separate sets of the total number of images are used for training and testing purposes. About two-thirds of the pictures are used for the practise test, while the rest are saved for the real thing. Normal and sick potato leaves might be distinguished by the proposed model. To prevent the spread of illness throughout the developed nation, farmers might easily increase their expansion rate [3].

Crop devastation due to plant diseases has a negative impact on the economy. Animals, like people, can suffer from the effects of plant diseases. It is estimated that plant diseases account for around 40% of the total loss of crops. In nations where the majority of the population relies on agriculture for its livelihood, early disease detection in plants is crucial to increasing the country's GDP through higher crop yields. In a few years, the world's population is expected to reach over 9 billion, as stated in a report by the Food and Agriculture Organization (FAO). However, agricultural output must rise by at least 70% if the world is to meet the needs of its growing population. Pathogens can infect plants and destroy harvests, thus it's crucial to catch diseases in their early stages to limit economic damage. Farmers in developing nations often rely on labor-intensive and ineffective methods of plant observation, such as visual inspection. When dealing with disorders with overlapping symptoms, this sort of inspection is useless. However, in the last ten years, cutting-edge methods for illness diagnosis have emerged. Spotting illnesses by capturing photos of affected leaves is a promising approach. Computer vision and image processing methods are used to analyse the leaf images.

Analyzing social networks is a fundamental method for studying social behaviour. Detecting or anticipating a sociotechnical attack in the vast and complex social network created by internet or telecommunications technology is challenging at best. This problem provides an opening to investigate various approaches, theories, and algorithms for locating such communities on the basis of shared characteristics and characteristics of their interconnections. Through the use of the *a priori* algorithm and the Viterbi algorithm, this paper attempts to discover the hidden information in large social networks by compressing them into smaller networks and predicting the most likely pattern of conversation to be followed in the network; if this pattern matches the existing pattern of criminals, terrorists, and hijackers, it may be useful to generate some kind of alert before the crime is committed. Social networking sites, blogs, opinions, ratings, reviews, serial bookmarking, social news, media sharing, and Wikipedia all contributed to the rapid dissemination of knowledge after the advent of mobile internet. If these patterns are thoroughly analysed, it may become clear whether the individual in question is engaging in malicious or innocent contacts with a certain user, which might then serve as a basis for any number of sociotechnical attacks. If the above CDR simulation is applied to internet-based networks and we are able to obtain the data that might be translated into a transition and emission matrix, then we may draw many types of prediction that will aid us in making judgments [4].

The identification of potato leaf diseases is crucial in avoiding crop failure. Potato leaf diseases are automatically classified using an image processing technique. An efficient approach of feature extraction is crucial to the success of a classification system. While current techniques can extract features, their results are often inaccurate. In this study, we suggest a method for classifying potato leaf diseases based on the various colours and textures of their symptoms. The suggested method consists of three stages: feature extraction, classification, and image segmentation. The initial step is to convert the leaf image from RGB to $L^*a^*b^*$. After identifying an area of interest, the k-means clustering technique is used to distinguish between the background and green zone (healthy leaf). Second, proposed distinct colour features are extracted employing the maximum, minimum colour difference method [5].

Advantage

Early Detection: CNNs can detect plant leaf diseases at an early stage, even before they become visible to the human eye. This helps farmers and plant growers take necessary actions before the disease spreads to other plants, thus reducing crop loss [42].

High Accuracy: CNNs are known for their high accuracy in image classification tasks. The CNN can accurately classify new images and identify the present disease type by training the network with a large dataset of images of healthy and diseased plant leaves [43-47].

Automated Process: Predicting plant leaf diseases using CNNs is an automated process that can save time and effort for farmers and plant growers. CNN can analyze large datasets of images in a short amount of time, reducing the need for manual inspection.

Cost-effective: Using CNNs to predict plant leaf diseases, farmers and plant growers can reduce their reliance on pesticides and other chemicals. This can lead to cost savings and a more sustainable approach to farming [48-51].

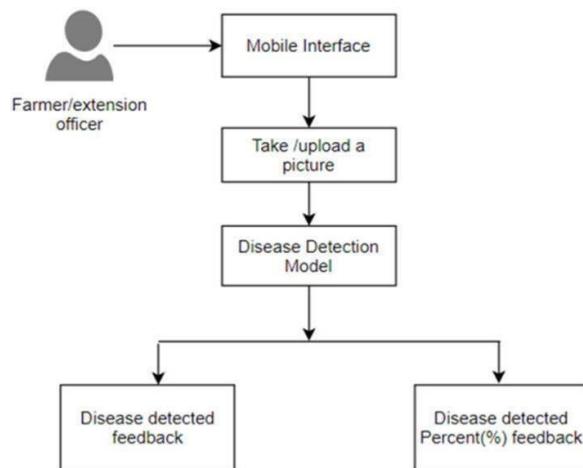
Scalability: CNNs can be trained on large image datasets, making them scalable for large-scale farming operations. As the amount of data increases, the accuracy of the CNN also increases, making it a useful tool for predicting plant leaf diseases in various settings [52-56].

System Specification

Data science, machine learning applications, massive data processing, predictive analytics, and so on all benefit from the use of Python and R, and Anaconda is an open distribution of these languages that tries to make these tasks easier. The "Conda" package management system handles the many versions of each package. The Anaconda distribution is used by over 12 million people, and it contains over 1400 widely-used data science tools that are compatible with Windows, Linux, and MacOS. Instead of learning how to install each library separately, you may simply use the Anaconda distribution, which includes over 1,400 packages and the Conda package and virtual environment manager known as Anaconda Navigator [57-61]. Either the conda install command or the pip install programme, both of which come pre-installed with Anaconda, can be used to obtain and install the various open-source packages. Pip packages offer many of the same functionalities as conda packages, and the two can often be used interchangeably. Anaconda allows users to upload their own packages to a repository, be it the Cloud, PyPI, or somewhere else, so that others may use them. Anaconda2 ships with Python 2.7, while Anaconda3 comes with Python 3.7. However, conda allows you to easily install any version of Python into a brand-new environment. Python is an interpreted high-level language that may be used for a wide variety of

programming tasks. The principle behind its design prioritises the readability of the code by heavily indenting it. Its object-oriented approach is built into the language to aid in the creation of clean, logical code for both small and large-scale endeavours [62-67].

Both garbage collection and dynamic typing are features of Python. It's compatible with a wide range of programming styles, including procedural, object-oriented, and functional. As a result of its extensive standard library, this language is frequently referred to as "batteries included"



(fig.1).

Figure 1: Activity Diagram

System Implementation

Data pre-processing is essential in plant leaf disease detection using convolutional neural networks (CNN). The dataset's quality plays a crucial role in the model's performance, and the pre-processed data must be normalized, cleaned, and transformed before being fed into the CNN. The first step is to collect a large and diverse dataset of plant leaf images representing different disease stages, including healthy and diseased leaves. The dataset must be balanced to prevent the model's bias towards a particular class [68-71].

The collected dataset is then pre-processed by performing image augmentation techniques such as rotation, flipping, and zooming. These techniques help to increase the number of samples available for training, make the model more robust to different orientations and deformations, and prevent overfitting. Next, the images are resized to a standard size to ensure consistency across the dataset. Resizing also reduces the computational complexity of the model and speeds up the training process [72-76].

Further, the images are normalized by subtracting the mean pixel value from each pixel and dividing it by the standard deviation. Normalization is critical because it makes the training process more stable and improves the convergence speed of the optimization algorithm. Moreover, normalization also makes the model invariant to illumination changes and reduces the impact of noise and artefacts in the images [77-81].

Lastly, the dataset is split into training and validation sets. The training set is used to train the model, and the validation set is used to evaluate the model's performance during training and fine-tune the hyperparameters. The training set should be large enough to enable the model to learn complex patterns in the data, and the validation set should represent the test set to ensure that the

model generalizes well [82-85].

Effective data pre-processing techniques can significantly improve the accuracy and robustness of the CNN-based model for plant leaf disease detection. Choosing the right data pre-processing techniques and hyperparameters is essential to ensure that the model learns meaningful representations of the data and achieves high accuracy in identifying different types of plant diseases [86-91].

Given Input Expected Output

Data validation, cleaning, and preparing are essential steps in plant leaf disease detection using convolutional neural networks (CNN) to ensure that the dataset used for training the model is high quality. Data validation involves verifying that the dataset is complete, accurate, and relevant to the problem. The first step is to check the data for missing values, duplicates, and outliers, which can negatively impact the model's performance. Missing values can be credited or removed depending on the amount of missing data, and duplicates can be removed to prevent the model from being biased towards certain samples [92-94]. The next step is to ensure that the dataset represents the problem being solved. This involves selecting diverse images representing different stages and types of plant diseases, including healthy and diseased leaves. The dataset should be balanced to prevent the model's bias towards a particular class. The data should also be labelled correctly to enable the model to learn meaningful data representations [95].

Data cleaning involves removing any artefacts or noise from the images that can negatively impact the model's performance [96]. This can include removing background noise, cropping, and correcting image orientation. The images should also be checked for quality to ensure they are clear and properly focused. Data preparation involves transforming the pre-processed data into a format that can be fed into the CNN model. The images are typically converted into arrays of pixel values and saved in a compressed format such as JPEG or PNG. The dataset is split into training and validation sets, with the training set used to train the model and the validation set used to evaluate the model's performance during training. In conclusion, data validation, cleaning, and preparation are critical steps in plant leaf disease detection using CNNs to ensure that the model is trained on a high-quality dataset. The quality of the data determines the accuracy and robustness of the model, and it is essential to select a diverse and representative set of images and pre-process them effectively to achieve high accuracy in identifying different types of plant diseases.

Exploration data analysis of visualization

The ability to effectively visualise data is crucial in the fields of applied statistics and machine learning. Quantitative summaries and estimations are fundamental concerns in the field of statistics. Quantitative understanding is greatly aided by the tools provided by data visualisation. When getting to know a dataset, this might be useful for spotting patterns, bad data, anomalies, etc. Data visualisation, when combined with a basic understanding of the relevant subject, allows for the expression and demonstration of essential relationships through plots and charts that are more intuitive and relevant to the intended audience than measurements of association or significance. It will suggest further reading for those interested in learning more about the topics of data visualisation and exploratory data analysis. Visual representations of data, such as charts and graphs, can often shed light on previously incomprehensible patterns. Data visualisation is a key competency in the fields of applied statistics and machine learning. It will learn about the various plots that may be used for data visualisation in Python and how to interpret the results.

Given Input Expected Output

The term "pre-processing" is used to describe the operations performed on our data before it is sent into the algorithm. Data Pre-processing is a method for preparing a data set for further analysis. That is to say, anytime data is compiled from many resources, it is done so in a raw format that makes analysis impossible. Machine Learning models perform better when given clean, well-structured data to work with. In order to function properly, certain Machine Learning models necessitate data in a particular format; for instance, the Random Forest method cannot process data with missing values. Therefore, in order to put into action a random forest technique, it is necessary to handle null values from the initial raw data. In addition, the data set should be organised in such a way that many Machine Learning and Deep Learning algorithms can be applied to it.

FP occurs when a person who intends to pay is incorrectly identified as a defaulter. When the true class is different from the expected one. This passenger did not survive, according to the actual class, but according to the anticipated class, they will.

Having a defaulter predicted as the payer is an example of a false negative (FN). In cases where the former is true and the latter is false, such as when the actual class value indicates that this passenger survived but the predicted class informs you that the passenger will die.

True Positives (TP): A person is identified as a defaulter when it is determined that they will not pay. If the actual class value indicates that the passenger did, in fact, survive, and the predicted class value likewise indicates that the passenger did, then both the actual class value and the projected class value are positive.

A defaulter is expected to be the payer in a True Negative (TN). That the actual class value is "no" and the projected class value is "no" indicates that these negative values were accurately predicted. This passenger did not survive, as indicated by both the actual and anticipated classes.

Algorithm And Techniques Algorithm Explanation

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm designed to analyze images and extract features relevant to a particular task, such as object recognition or image classification. CNNs consist of several layers, including convolutional, pooling, and fully connected layers, each performing a specific operation on the input data.

The first layer in a CNN is the input layer, which takes in an image and converts it into a matrix of pixel values. The next layer is the convolution layer, which applies a set of learnable filters to the input image to extract relevant features to the task. The filters are small matrices that slide over the image, performing a dot product with the pixels in the input image to generate a feature map. The convolution layer learns to detect various low-level features, such as edges and curves in the image.

The next layer is the pooling layer, which reduces the dimensionality of the feature map and makes the model more computationally efficient. The pooling layer divides the feature map into non-overlapping regions and takes the maximum or average value in each region. The pooling layer helps make the model more robust to small variations in the input image and reduces the computation required.

After several convolution and pooling layers, the output is passed to a fully connected layer, which learns to classify the image based on the features extracted by the earlier layers. The fully connected layer consists of a set of neurons that take the flattened output from the convolution and pooling layers as input and generate a probability distribution over the different classes of the task.

During training, the weights of the filters in the convolution layers and the neurons' weights in the fully connected layers are adjusted using backpropagation and gradient descent to minimize the loss function. The loss function measures the difference between the predicted and actual output of the model and is used to update the model's weights. In summary, CNNs are powerful deep-learning algorithms that are capable of analyzing images and extracting features that are relevant to a particular task. CNNs consist of several layers, including convolution, pooling, and fully connected layers, each performing a specific operation on the input data. CNNs are trained using backpropagation and gradient descent to minimize the loss function and improve the model's accuracy.

Flask (Web Frame Work):

Flask is a lightweight and flexible Python web framework that allows developers to build web applications quickly and easily. Flask is based on the Werkzeug WSGI toolkit and the Jinja2 template engine and is designed to be modular, allowing developers to use only the components they need for their projects. The main features of Flask include routing, templating, request handling, and response generation. Flask provides a simple and intuitive routing system that allows developers to define URL patterns and map them to Python functions. The templating engine allows developers to create HTML templates that can be dynamically filled with data from Python code. Flask also provides request-handling capabilities, allowing developers to handle HTTP requests and extract information from them, such as headers, form data, and cookies. Finally, Flask allows developers to generate responses to HTTP requests, including HTML pages, JSON data, and images.

One of the key benefits of Flask is its simplicity and flexibility. Flask is lightweight and does not impose any specific project structure or requirements. Developers can create small, standalone applications or large, complex web applications using Flask and can easily integrate Flask with other libraries and tools in the Python ecosystem. Flask also provides built-in support for testing and debugging, making it easy to develop and maintain web applications.

Another benefit of Flask is its extensive ecosystem of third-party extensions and plugins. Flask has a large and active community of developers who have created a wide range of extensions and plugins that add additional functionality to Flask, such as authentication, database integration, and caching. These extensions can be easily integrated into Flask applications, allowing developers to quickly add new features to their projects.

In summary, Flask is a lightweight and flexible Python web framework that provides a simple and intuitive API for building web applications. Flask is easy to use and has a large ecosystem of third-party extensions and plugins, making it a popular choice for web developers. Flask's flexibility allows developers to create a wide range of web applications, from small, standalone applications to large, complex projects. It has no database abstraction layer, form validation, or other components where pre-existing third-party libraries provide common functions.

However, Flask is extensible, so you can tack on new functionality to your app just as if it were built into the core framework. There are add-ons for object-relational mappers, form validation, file uploading, and multiple open authentication systems. Armin Ronacher of Pocoo, an international Python user organisation founded in 2004, is responsible for developing Flask. Ronacher claims that the concept was actually an April Fool's joke that caught on and was developed into a legitimate use. The name is a pun on the original Bottle architecture. The Pocoo initiatives Werkzeug and Jinja originated from the Python-based bulletin board system built by

Ronacher and Georg Brand. A new project called Pallets took over development of Flask and related libraries when the Pocoo team split in April 2016. Among Python users, Flask has risen in popularity. As of October 2020, it has been named the most popular web framework by Python developers and has the second-highest ratings on GitHub among Python web-development frameworks, behind only Django.

System Testing

The goal of testing is to expose flaws. The goal of testing is to expose every possible flaw or vulnerability in a product. It's useful for verifying the operation of individual parts, whole assemblies, and even finished goods. Software testing is the practise of putting a programme through its paces to make sure it won't crash or otherwise behave badly during use. There is a wide range of examination styles. There are several kinds of tests because various testing needs must be met.

Test Case Design

There should be no broken links or fields. The specified link must be used to access the desired page. The login screen, messages, and responses must all be instant.

Unit Testing

The goal of unit testing is to ensure that the internal logic of a programme is working as intended and that legitimate inputs will result in expected outputs. It is important to verify the correctness of all code paths and decision trees. It involves testing the functionality of the app's constituent pieces of code. It's done after each component is finished but before they're integrated. This entails invasive and knowledge-based testing of structures. When testing a particular business process, application, or system configuration, unit tests run fundamental tests at the component level. Every branch of a business process should have its own set of unit tests to guarantee that it follows the published specifications and produces the desired outputs.

Integration Testing

To ensure that all parts of an application work together, we use integration tests. Event-driven testing focuses on the most fundamental results of screens and fields. Even though each part was adequate on its own, as evidenced by passing unit tests, integration tests indicate that the whole is proper and consistent. The goal of integration testing is to reveal issues that manifest as a result of putting different parts together.

Functional Testing

The purpose of functional testing is to systematically prove that the system works as intended by the business and technical requirements, the system documentation, and the user guides.

When conducting functional tests, focus on the following areas:

Input validation Accept just the predefined types of valid input.

Faulty input: it is necessary to reject known categories of invalid input.

Specifically defined responsibilities need to be carried out. It is necessary to test the various categories of application output.

Invoking a system or method that serves as an interface is required.

Requirements, important functions, and unique test cases are the focal points of functional testing planning and execution. Business process flows, data fields, predetermined procedures, and subsequent processes should all be thought up and tested systematically. Before functional testing is complete, we identify additional tests and evaluate the current tests' efficacy.

System Testing

By testing the complete system as a whole, System Testing guarantees that the final product will function as expected. It puts a set up to the test to see if it will produce consistent and reliable outcomes. The configuration-oriented system integration test is a type of system test. Process descriptions and flows form the backbone of system testing, with an emphasis on the integration points and dependencies that are driven in advance.

Result and Discussion

Welcome to our image upload platform! Here, you can share images related to various diseases to contribute to our database. Additionally, you can provide valuable information about the disease, including its description and recommended control measures. Please follow the instructions below to submit your image and contribute to our growing knowledge base. This page builds for the user to upload the image and choose the language for prediction; this page is built for the user who doesn't need to be a farmer. This page is built using HTML, CSS and Javascript to make the page more attractive and user-friendly to make the user feel more comfortable using it (figs 2 and 3).

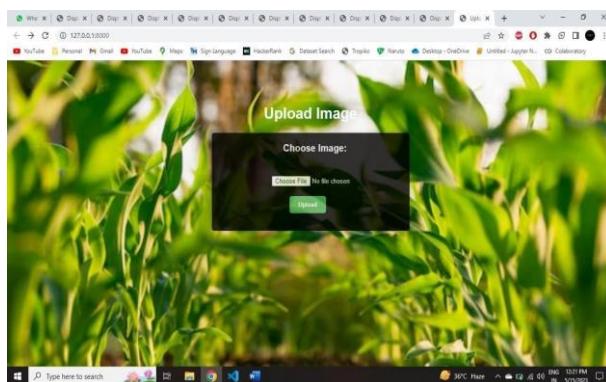


Figure 2: Webpage for Plant Leaf Disease Classification

Figure 3: Choosing the Input Image for Prediction

Welcome to our image upload platform for plant disease detection! Here, you can contribute to our deep learning model's training by uploading images of diseased plants. Our Convolutional Neural Network (CNN) will analyze the images to accurately identify and classify plant diseases. Please follow the instructions below to submit your image and help us improve our detection capabilities.

Choose Your Image

To begin, select the “Choose File” button below to browse your device and locate the image file of the diseased plant you want to upload. Please make sure the image is clear, well-lit, and focused on the affected parts of the plant. Accepted image formats include JPEG, PNG, and GIF. If possible, capture images from various angles to comprehensively view the disease’s symptoms. Please ensure the file size does not exceed the specified limit for a smooth uploading process (fig.4).

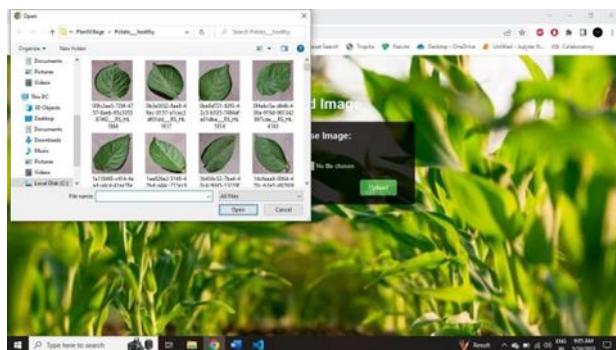


Figure 4: Choosing the Language

Language Selection for Plant Disease Description and Control Measures To ensure that you receive plant disease descriptions and control measures in your preferred language, please choose your language preference from the options below. Our system will present the information accordingly, enabling you to effectively understand and implement the necessary measures. Please select your preferred language from the dropdown box. It consists of 106 languages for the user. By selecting your language preference, you will access disease descriptions and control measures tailored to your language, providing accurate and comprehensive information. At our platform, we understand the importance of language accessibility in facilitating effective communication and promoting successful disease management. We strive to cater to diverse language preferences to support users worldwide in their efforts to combat plant diseases (fig.5).

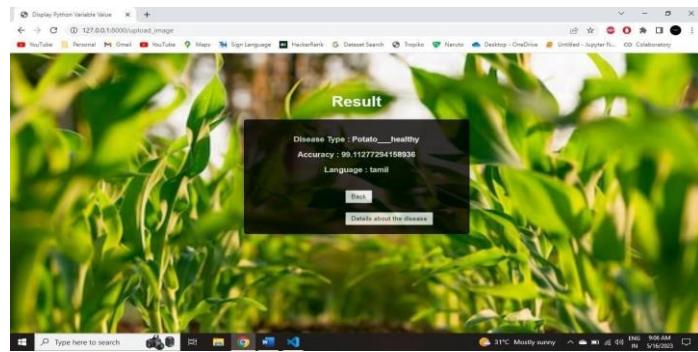


Figure 5: Getting the Result

Thank you for using our plant leaf disease detection system. We have analyzed the image you uploaded and identified the following results: Disease Detected: [Enter disease name] Accuracy Level: [Enter accuracy percentage] Based on our analysis, your uploaded image shows symptoms of [enter disease name]. Our deep learning model has determined this diagnosis with a confidence level of [enter accuracy percentage]. Please note that while our model strives for high accuracy, there may be slight variations in the diagnosis due to the complexity of plant diseases and image quality (fig.6).

Figure 6: More Detail About the Disease

Plant Disease Name: Disease name Plant Type: plant affected plant type. Description: Provide a detailed description of the specific plant disease. Include information about the disease's symptoms, progression, and appearance on the affected plant. Common symptoms of entering the disease may include Symptom: Describe the first symptom, such as leaf discolouration, spots, wilting, deformities, etc.

Figure 7: Prevention and Control Measures

Provide a list of recommended prevention and control measures tailored to managing the specific disease in the mentioned plant type (fig.7). To effectively manage and mitigate disease name, consider the following preventive strategies and control measures. Describe a preventive measure, such as selecting disease-resistant plant varieties, implementing proper sanitation practices, or using disease-free planting material. Explain a control measure, such as applying appropriate fungicides or bactericides, practising crop rotation, optimizing irrigation techniques, or employing biological controls. Suggest additional measures like cultural practices, pruning infected plant parts, improving soil health, or monitoring pest populations to reduce disease incidence.

Conclusion

In conclusion, plant leaf disease detection using Convolutional Neural Networks (CNN) is a promising approach for automating the detection and diagnosis of plant diseases. With the increasing demand for food production, it is essential to detect plant diseases early to prevent crop loss and ensure food security. CNNs are powerful deep-learning algorithms that can learn complex image features and patterns. Building a plant leaf disease detection model using CNNs involves data pre-processing, model training, and model evaluation. Data pre-processing involves cleaning and preparing the dataset, including image augmentation and normalization. Model training involves feeding the pre-processed dataset to the CNN, fine-tuning its parameters, and optimizing its performance. Model evaluation involves testing the model on a validation dataset to assess its accuracy and efficiency. The plant leaf disease detection model using CNNs has shown promising results with high accuracy and efficiency. It can potentially revolutionize the agriculture industry by automating the detection and diagnosis of plant diseases, reducing crop loss, and improving food production. With further advancements in computer vision and machine learning, the plant leaf disease detection model using CNNs can be further improved and scaled to handle large-scale agricultural operations.

Future Work

Several potential areas for future work in plant leaf disease detection using CNNs exist. Some of these include multi-class classification: Currently, most plant leaf disease detection models focus on binary classification, i.e., detecting whether a leaf is diseased or healthy. However, in real-world scenarios, multiple diseases can affect a single plant. Developing models that can detect and classify multiple diseases simultaneously could be a valuable contribution. Transfer learning: Transfer learning is a technique where a pre-trained model is fine-tuned for a specific task. Transfer learning can be applied to plant leaf disease detection using pre-trained CNN models, such as VGG, ResNet, or Inception, and fine-tuning them on plant disease datasets. This can help improve the accuracy and efficiency of the models and reduce the need for large datasets. Integration with smart farming technologies: The integration of plant leaf disease detection models with other smart farming technologies, such as drones, sensors, and IoT devices, can provide real-time monitoring and alerts for farmers. This can enable farmers to take timely action to prevent crop loss and improve their yield. Development of user-friendly interfaces: Plant leaf disease detection models can be made more accessible to farmers and growers by developing user-friendly interfaces and applications. These interfaces can provide insights into the health of their crops, track disease progression, and recommend treatments based on the severity of the disease. Application to other plant species: Plant leaf disease detection models can be extended to other

plant species, such as fruits and vegetables, to detect and diagnose diseases affecting them. This can help prevent crop loss and improve food production for many crops. In summary, there are many exciting areas for future work in plant leaf disease detection using CNNs, including multi-class classification, transfer learning, integration with smart farming technologies, development of user-friendly interfaces, and extension to other plant species. These advancements can potentially revolutionize the agriculture industry and improve food production worldwide.

References

1. S. U. Habiba and M. K. Islam, "Tomato plant diseases classification using deep learning based classifier from leaves images," in 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), 2021.
2. M. K. R. Asif, M. A. Rahman and M. H. Hena, "CNN based Disease Detection Approach on Potato Leaves," 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020, pp. 428-432, doi: 10.1109/ICISS49785.2020.9316021.
3. P. Tm, A. Pranathi, K. SaiAshritha, N. B. Chittaragi and S. G. Koolagudi, "Tomato Leaf Disease Detection Using Convolutional Neural Networks," 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2018, pp. 1-5, doi: 10.1109/IC3.2018.8530532.
4. M. A. A. Mamun, D. Z. Karim, S. N. Pinku and T. A. Bushra, "TLNet: A Deep CNN model for Prediction of tomato Leaf Diseases," 2020 23rd International Conference on Computer and Information Technology (ICCIT), DHAKA, Bangladesh, 2020, pp. 1-6, doi: 10.1109/ICCIT51783.2020.9392664.
5. U. Sutrapakti and A. Bumpeng, "Potato Leaf Disease Classification Based on Distinct Color and Texture Feature Extraction," 2019 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019, pp. 82-85, doi: 10.1109/ISCIT.2019.8905128.
6. K. Gupta, A. Choubey, and S. Choubey, "Salp swarm optimisation with deep transfer learning enabled retinal fundus image classification model," *Int. J. Netw. Virtual Organ.*, vol. 27, no. 2, p. 163–180, 2022.
7. Gupta, I.K., Choubey, A. and Choubey, S., 2022. Mayfly optimization with deep learning enabled retinal fundus image classification model. *Computers and Electrical Engineering*, 102, p.108176.
8. Gupta, I.K., Choubey, A. and Choubey, S., 2022. Artifical intelligence with optimal deep learning enabled automated retinal fundus image classification model. *Expert Systems*, 39(10), p.e13028.
9. Mishra, A.K., Gupta, I.K., Diwan, T.D. and Srivastava, S., 2023. Cervical precancerous lesion classification using quantum invasive weed optimization with deep learning on biomedical pap smear images. *Expert Systems*, p.e13308.
10. Gupta, I.K., Mishra, A.K., Diwan, T.D. and Srivastava, S., 2023. Unequal clustering scheme for hotspot mitigation in IoT-enabled wireless sensor networks based on fire hawk optimization. *Computers and Electrical Engineering*, 107, p.108615.
11. Uddin, M. I., Ali Shah, S. A., Al-Khasawneh, M. A., Alarood, A. A., & Alsolami, E. (2022). Optimal policy learning for COVID-19 prevention using reinforcement learning. *Journal of Information Science*, 48(3), 336-348.
12. Ullah, Z., Zeb, A., Ullah, I., Awan, K. M., Saeed, Y., Uddin, M. I., ... & Zareei, M. (2020). Certificateless proxy reencryption scheme (CPRES) based on hyperelliptic curve for access control in content-centric network (CCN). *Mobile Information Systems*, 2020, 1-13.
13. Alarood, A. A., Alsolami, E., Al-Khasawneh, M. A., Ababneh, N., & Elmedany, W. (2022). IES: Hyper-chaotic plain image encryption scheme using improved shuffled confusion-diffusion. *Ain Shams*

Engineering Journal, 13(3), 101583.

14. Rani, R., Kumar, S., Kaiwartya, O., Khasawneh, A. M., Lloret, J., Al-Khasawneh, M. A., ... & Alarood, A. A. (2021). Towards green computing oriented security: A lightweight postquantum signature for IoE. *Sensors*, 21(5), 1883.
15. Saleh, M. A., Othman, S. H., Al-Dhaqm, A., & Al-Khasawneh, M. A. (2021, June). Common investigation process model for Internet of Things forensics. In 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE) (pp. 84-89). IEEE.
16. Mast, N., Khan, M. A., Uddin, M. I., Ali Shah, S. A., Khan, A., Al-Khasawneh, M. A., & Mahmoud, M. (2021). Channel contention-based routing protocol for wireless ad hoc networks. *Complexity*, 2021, 1-10.
17. Al-Khasawneh, M. A., Shamsuddin, S. M., Hasan, S., & Bakar, A. A. (2018, July). MapReduce a comprehensive review. In 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE) (pp. 1-6). IEEE.
18. Kumar, V., Kumar, S., AlShboul, R., Aggarwal, G., Kaiwartya, O., Khasawneh, A. M., ... & Al-Khasawneh, M. A. (2021). Grouping and Sponsoring Centric Green Coverage Model for Internet of Things. *Sensors*, 21(12), 3948.
19. Sabir, M. W., Khan, Z., Saad, N. M., Khan, D. M., Al-Khasawneh, M. A., Perveen, K., ... & Azhar Ali, S. S. (2022). Segmentation of Liver Tumor in CT Scan Using ResU-Net. *Applied Sciences*, 12(17), 8650.
20. Alam Khan, Z., Feng, Z., Uddin, M. I., Mast, N., Ali Shah, S. A., Imtiaz, M., ... & Mahmoud, M. (2020). Optimal policy learning for disease prevention using reinforcement learning. *Scientific Programming*, 2020, 1-13.
21. Meng, F., Jagadeesan, L., & Thottan, M. (2021). Model-based reinforcement learning for service mesh fault resiliency in a web application-level. *arXiv preprint arXiv:2110.13621*.
22. Meng, F., Zhang, L., & Chen, Y. (2023) FEDEMB: An Efficient Vertical and Hybrid Federated Learning Algorithm Using Partial Network Embedding.
23. Meng, F., Zhang, L., & Chen, Y. (2023) Sample-Based Dynamic Hierarchical Trans-Former with Layer and Head Flexibility Via Contextual Bandit.
24. Meng, F. (2023) Transformers: Statistical Interpretation, Architectures and Applications.
25. M. Modekurti-Mahato, P. Kumar, and P. G. Raju, "Impact of Emotional Labor on Organizational Role Stress – A Study in the Services Sector in India," *Procedia Economics and Finance*, vol. 11, pp. 110–121, 2014.
26. M. Modekurti, and R. Chattopadhyay, "The relationship between organizational role stress and life satisfaction levels among women employees: an empirical study," *The Icfaian Journal of Management Research*. vol. 7, no. 5, pp. 25-34. 2008.
27. Ahmad, S. R., Prasad, K., Bhakuni S., Hedau, A., Narayan, P. B. S., & Parameswari, P, "The role and relation of emotional intelligence with work-life balance for working women in job stress," *The Scientific Temper*, Vol. 14, no. 1, pp. 233-237, 2023.
28. Awais, M., Bhuva, A., Bhuva, D., Fatima, S., & Sadiq, T. (2023). Optimized DEC: An effective cough detection framework using optimal weighted Features-aided deep Ensemble classifier for COVID-19. *Biomedical Signal Processing and Control*, 105026. doi:10.1016/j.bspc.2023.105026
29. Bhakuni S, "Poverty and sustainable development: Perspective from developed and developing nations," *International journal of Science Technology and Management*, Vol. 12, no. 06, pp. 68-81, 2023.
30. Bhakuni S, Saxena S, "Critically analyzing the role of total rewards and compensation in increasing employee motivation," *International Journal of Asian Business and Management (IJABM)*, vol. 2, no. 3, pp.225-240, 2023.

31. C. H. Patel, D. Undaviya, H. Dave, S. Degadwala, and D. Vyas, "EfficientNetB0 for Brain Stroke Classification on Computed Tomography Scan," in 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2023, pp. 713–718. doi: 10.1109/ICAAIC56838.2023.10141195.
32. D. D. Pandya, A. Jadeja, S. Degadwala, and D. Vyas, "Diagnostic Criteria for Depression based on Both Static and Dynamic Visual Features," in 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), 2023, pp. 635–639.
33. D. D. Pandya, A. Jadeja, S. Degadwala, and D. Vyas, "Ensemble Learning based Enzyme Family Classification using n-gram Feature," in 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), 2022, pp. 1386–1392.
34. D. D. Pandya, A. K. Patel, J. M. Purohit, M. N. Bhuptani, S. Degadwala, and D. Vyas, "Forecasting Number of Indian Startups using Supervised Learning Regression Models," in 2023 International Conference on Inventive Computation Technologies (ICICT), 2023, pp. 948–952. doi: 10.1109/ICICT57646.2023.10134480.
35. D. D. Pandya, S. K. Patel, A. H. Qureshi, A. J. Goswami, S. Degadwala, and D. Vyas, "Multi-Class Classification of Vector Borne Diseases using Convolution Neural Network," in 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 2023, pp. 1–8. doi: 10.1109/ICAAIC56838.2023.10140654.
36. D. Rathod, K. Patel, A. J. Goswami, S. Degadwala, and D. Vyas, "Exploring Drug Sentiment Analysis with Machine Learning Techniques," in 2023 International Conference on Inventive Computation Technologies (ICICT), 2023, pp. 9–12. doi: 10.1109/ICICT57646.2023.10134055.
37. D. Saxena, S. Khandare and S. Chaudhary, "An Overview of ChatGPT: Impact on Academic Learning," FMDB Transactions on Sustainable Techno Learning., vol. 1, no. 1, pp. 11–20, 2023.
38. D. Vyas and V. V Kapadia, "Evaluation of Adversarial Attacks and Detection on Transfer Learning Model," in 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), 2023, pp. 1116–1124. doi: 10.1109/ICCMC56507.2023.10084164.
39. Dahal, R. K., Ghimire, B., & Rai, B. (2022). A balanced scorecard approach for evaluating organizational performance of Nepal Telecom. *Management Dynamics*, 25(1), 63–73. <https://doi.org/10.3126/md.v25i1.53288>
40. Dahal, R. K., Ghimire, B., & Rai, B. (2022). Social and environmental accountabilities of the Nepalese cell phone operators. *Quest Journal of Management and Social Sciences*, 4(2), 225–235. <https://doi.org/10.3126/qjmss.v4i2.50317>
41. Dahal, R. K., Ghimire, B., & Rai, B. (2023). The strength of corporate governance metrics on organizational performance of Nepalese telecom industry. *THE BATUK: A Peer Reviewed Journal of Interdisciplinary Studies*, 9(1), 58–74. <https://doi.org/10.3126/batuk.v9i1.51900>
42. Dahal, R. K., Ghimire, B., Rai, B., & Shahi, B. J. (2023). Customer's perspective on non-financial performance metrics of telecommunication companies: The emerging market case. *Journal of Governance & Regulation*, 12(2), 8–18. <https://doi.org/10.22495/jgrv12i2art1>
43. E. Vashishtha and G. Dhawan, "Comparison of Baldrige Criteria of Strategy Planning and Harrison Text," FMDB Transactions on Sustainable Management Letters., vol. 1, no. 1, pp. 22–31, 2023.
44. E. Vashishtha and H. Kapoor, "Implementation of Blockchain Technology Across International Healthcare Markets," FMDB Transactions on Sustainable Technoprise Letters., vol. 1, no. 1, pp. 1–12, 2023.
45. F. Ahamad, D. K. Lobiyal, S. Degadwala, and D. Vyas, "Inspecting and Finding Faults in Railway Tracks Using Wireless Sensor Networks," in 2023 International Conference on Inventive Computation Technologies (ICICT), 2023, pp. 1241–1245. doi: 10.1109/ICICT57646.2023.10134164.

46. Gupta, M. Kumar, A. Rangra, V. K. Tiwari, and P. Saxena, Network intrusion detection types and analysis of their tools. India, 2012.

47. H. Gupta, D. Patel, A. Makade, K. Gupta, O. P. Vyas, and A. Puliafito, "Risk Prediction in the Life Insurance Industry Using Federated Learning Approach," in 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), 2022, pp. 948–953. doi: 10.1109/MELECON53508.2022.9842869.

48. H. Lakhani, D. Undaviya, H. Dave, S. Degadwala, and D. Vyas, "PET-MRI Sequence Fusion using Convolution Neural Network," in 2023 International Conference on Inventive Computation Technologies (ICICT), 2023, pp. 317–321. doi: 10.1109/ICICT57646.2023.10134462.

49. Hasan, M. (2022). A Metaphorical & Visual Analysis of Gender in Al Jazeera & BBC coverage of Afghanistan after the Taliban takes over. *Indiana Journal of Humanities and Social Sciences*, 3(5), 38–43.

50. J. Mahale, S. Degadwala, and D. Vyas, "Crop Prediction System based on Soil and Weather Characteristics," in 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2022, pp. 340–345.

51. K. Srinivas, P. R. Velmurugan, and N. Andiyappillai, "Digital Human Resources and Management Support Improve Human Resources Effectiveness," *FMDB Transactions on Sustainable Management Letters.*, vol. 1, no. 1, pp. 32-45, 2023.

52. Kumar et al., "Flamingo-optimization-based deep convolutional neural network for IoT-based arrhythmia classification," *Sensors (Basel)*, vol. 23, no. 9, 2023.

53. Kumar, M. Kumar, S. Verma, K. Kavita, N. Z. Jhanjhi, and R. M. Ghoniem, "Vbswp-CeaH: Vigorous buyer-seller watermarking protocol without trusted certificate authority for copyright protection in cloud environment through additive homomorphism," *Symmetry (Basel)*, vol. 14, no. 11, p. 2441, 2022

54. Kumar, M.; Kumar, A.; Verma, S.; Bhattacharya, P.; Ghimire, D.; Kim, S.-h.; Hosen, A.S.M.S. Healthcare Internet of Things (H-IoT): Current Trends, Future Prospects, Applications, Challenges, and Security Issues. *Electronics* 2023, 12, 2050. <https://doi.org/10.3390/electronics12092050>.

55. M. Kumar et al., "BBNSF: Blockchain-based novel secure framework using RP2-RSA and ASR-ANN technique for IoT enabled healthcare systems," *Sensors (Basel)*, vol. 22, no. 23, p. 9448, 2022.

56. M. Kumar, D. Kumar, and M. A. K. Akhtar, "A modified GA-based load balanced clustering algorithm for WSN: MGALBC," *Int. J. Embed. Real-time Commun. Syst.*, vol. 12, no. 1, pp. 44–63, 2021.

57. M. Kumar, D. Kumar, and M. A. K. Akhtar, "Mathematical model for sink mobility (MMSM) in wireless sensor networks to improve network lifetime," in *Communications in Computer and Information Science*, Singapore: Springer Singapore, 2019, pp. 133–141.

58. M. Mahato and P. Kumar, "Emotional Labor – An Empirical Analysis of the Correlations of Its Variables," *European Journal of Business and Management*, vol. 4, no. 7, pp. 163–168, Jun. 2012.

59. M. Mahato, "Life satisfaction–what does it really mean to Indians?," *PURUSHARTHA-A journal of Management, Ethics and Spirituality*, vol. 7, no. 1, pp. 79–87. 2014.

60. M. Mahato, "Organizational change: An action oriented toolkit," *South Asian Journal of Management*, vol. 22, no. 4, pp. 197. 2015.

61. M. Mahato, "Performance Analysis of High, Medium and Low Companies in Indian Pharmaceuticals Industry," *IUP Journal of Management Research*, vol. 10, no. 3, pp. 52-70, 2011.

62. M. Munshi, K. N. Tumu, M. N. Hasan, and M. Z. Amin, "Biochemical effects of commercial feedstuffs on the fry of climbing perch (*Anabas testudineus*) and its impact on Swiss albino mice as an animal model," *Toxicology Reports*, vol. 5, pp. 521-530, 2018

63. M. Munshi, M. H. Sohrab, M. N. Begum, S. R. Rony, M. A. Karim, F. Afroz, and M. N. Hasan, "Evaluation of bioactivity and phytochemical screening of endophytic fungi isolated from Ceriops

decandra (Griff.) W. Theob, a mangrove plant in Bangladesh," *Clinical Phytoscience*, vol. 7, article no. 81, 2021.

64. M. Munshi, M. N. H. Zilani, M. A. Islam, P. Biswas, A. Das, F. Afroz, and M. N. Hasan, "Novel compounds from endophytic fungi of *Ceriops decandra* inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study," *Informatics in Medicine Unlocked*, vol. 32, p. 101046, 2022.

65. M. P. Ocoró, O. C. C. Polo, and S. Khandare, "Importance of Business Financial Risk Analysis in SMEs According to COVID-19," *FMDB Transactions on Sustainable Management Letters.*, vol. 1, no. 1, pp. 12-21, 2023.

66. M. Z. Amin, K. N. Tumu, M. Munshi, Y. N. Jolly, and M. M. Rahman, "Assessment of Heavy Metal Contents in Commercial Feedstuffs and Broiler (*Gallus domesticus*) Meat and Its Impact on Swiss Albino Mice as an Animal Model," *Agricultural Science Digest - A Research Journal*, vol. 39, no. 2, pp. 149-155, 2019, doi: 10.18805/ag.D-4898.

67. Md. N. Hasan, M. Munshi, M. H. Rahman, S. M. N. Alam, and A. Hirashima, "Evaluation of antihyperglycemic activity of *Lasia spinosa* leaf extracts in Swiss albino mice," *World Journal of Pharmacy and Pharmaceutical Sciences*, vol. 3, no. 10, pp. 118-124, 2014.

68. P. G. Raju and M. M. Mahato, "Impact of longer usage of lean manufacturing system (Toyotism) on employment outcomes - a study in garment manufacturing industries in India," *International Journal of Services and Operations Management*, vol. 18, no. 3, p. 305, 2014.

69. Pratap, A. Kumar, and M. Kumar, "Analyzing the need of edge computing for internet of things (IoT)," in *Proceedings of Second International Conference on Computing, Communications, and Cyber-Security*, Singapore: Springer Singapore, 2021, pp. 203–212.

70. S. Shruthi and B.R. Aravind, "Engaging ESL Learning on Mastering Present Tense with Nearpod and LearningApps.org for Engineering Students," *FMDB Transactions on Sustainable Techno Learning.*, vol. 1, no. 1, pp. 21–31, 2023.

71. P.S. Venkateswaran and P. Viktor, "A Study on Brand Equity of Fast-Moving Consumer Goods with Reference to Madurai, Tamil Nadu," *FMDB Transactions on Sustainable Technoprise Letters.*, vol. 1, no. 1, pp. 13–27, 2023.

72. J. J. L. María, O. C. C. Polo, and T. Elhadary, "An Analysis of the Morality and Social Responsibility of Non-Profit Organizations," *FMDB Transactions on Sustainable Technoprise Letters.*, vol. 1, no. 1, pp. 28–35, 2023.

73. P. S. Kuragayala, "A Systematic Review on Workforce Development in Healthcare Sector: Implications in the Post-COVID Scenario," *FMDB Transactions on Sustainable Technoprise Letters.*, vol. 1, no. 1, pp. 36–46, 2023.

74. S Silvia Priscila, M Hemalatha, " Diagnosisof heart disease with particle bee-neural network" *Biomedical Research*, Special Issue, pp. S40-S46, 2018.

75. S Silvia Priscila, M Hemalatha, " Heart Disease Prediction Using Integer-Coded Genetic Algorithm (ICGA) Based Particle Clonal Neural Network (ICGA-PCNN)", *Bonfring International Journal of Industrial Engineering and Management Science* 8 (2), 15-19, 2018.

76. S. Dave, S. Degadwala, and D. Vyas, "DDoS Detection at Fog Layer in Internet of Things," in *2022 International Conference on Edge Computing and Applications (ICECAA)*, 2022, pp. 610–617.

77. S. Degadwala, D. Vyas, D. D. Pandya, and H. Dave, "Multi-Class Pneumonia Classification Using Transfer Deep Learning Methods," in *2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)*, 2023, pp. 559–563. doi: 10.1109/ICAIS56108.2023.10073807.

78. S. S. Priscila, S.S. Rajest, S. N. Tadiboina, R. Regin and S. András, "Analysis of Machine Learning and Deep Learning Methods for Superstore Sales Prediction," *FMDB Transactions on Sustainable Computer Letters.*, vol. 1, no. 1, pp. 1–11, 2023.

79. J. Jeganathan, S. Vashist, G. Nirmala, R. Deep, "A Cross Sectional Study on Anxiety and Depression Among Patients with Alcohol Withdrawal Syndrome," FMDB Transactions on Sustainable Health Science Letters, vol. 1, no. 1, pp. 31–40, 2023.
80. P.S. Venkateswaran, S. Singh, P. Paramasivan, S. S. Rajest, M. E. Lourens, R. Regin, "A Study on The Influence of Quality of Service on Customer Satisfaction Towards Hotel Industry," FMDB Transactions on Sustainable Social Sciences Letters, vol. 1, no. 1, pp. 1–11, 2023.
81. S. Tripathi and M. Al-Shahri, "Problems and Prospects on the Evolution of Advertising and Public Relations Industries in Oman," FMDB Transactions on Sustainable Management Letters., vol. 1, no. 1, pp. 1–11, 2023.
82. S. Upadhyay, M. Kumar, A. Kumar, K. Z. Ghafoor, and S. Manoharan, "SmHeSol (IOT-BC): Smart Healthcare Solution for future development using speech feature extraction integration approach with IOT and Blockchain," Journal of Sensors, vol. 2022, pp. 1–13, 2022. doi:10.1155/2022/3862860
83. Santoso, L.W. and Yulia, (2017) "Data Warehouse with Big Data Technology for Higher Education", Procedia Computer Science, Vol. 124 No. 1.
84. Santoso, L.W. and Yulia, (2018) "Academic Decision Support System for Top Management", Advanced in Natural and Applied Sciences, Vol. 12 No. 4.
85. Santoso, L.W., Lim, R. and Trisnajaya, K. (2018) "Smart Home System Using Internet of Things", Journal of Information, Communication and Convergence Engineering, Vol. 16 No.1.
86. Santoso, L.W., Yulia. (2019) "ITIL Service Management Model for E-learning", Journal of Adv. Research in Dynamical & Control Systems, vol. 11, no. 6, pp. 190-197.
87. Santoso, L.W., Yulia. (2020) "Predicting student performance in higher education using multiregression models", Telecommunication Computing Electronics and Control, Journal, vol. 18, no. 3, pp. 1354-1360.
88. Shadab et al., "Comparative analysis of rectangular and circular waveguide using matlab simulation," International Journal of Distributed and Parallel System., vol. 3, no. 4, pp. 39–52, 2012.
89. Sharma, Praveen Kumar, and Shivram Sharma. "Results on Complex-Valued Complete Fuzzy Metric Spaces." Great Britain Journals Press, London Journal of Research in Science: Natural and Formal, Vol 23, Issue 2 (2023), Page No. 57-64.
90. Sharma, Praveen Kumar, S. Chaudhary, and Kamal Wadhwa. "Common Fixed Points For Weak Compatible Maps In Fuzzy Metric Spaces." International Journal of Applied Mathematical Research, Vol.1, No. (2012): pp 159-177.
91. Sharma, Praveen Kumar. "Common fixed point theorem in intuitionistic fuzzy metric space using the property (CLRg)." Bangmod Int. J. Math. & Comp. Sci., Vol. 1, No.1 (2015): pp 83-95.
92. Sharma, Praveen Kumar. "Some common fixed point theorems for sequence of self mappings in fuzzy metric space with property (CLRg)." J. Math. Comput. Sci., Vol.10, No.5 (2020): pp 1499-1509.
93. Sharma, Shivram, and Praveen Kumar Sharma. "On common α -fixed point theorems." J. Math. Comput. Sci., Vol.11, No.1 (2020): pp 87-108.
94. SS Priscila, M Hemalatha, "Improving the performance of entropy ensembles of neural networks (EENNNS) on classification of heart disease prediction", Int J Pure Appl Math 117 (7), 371-386, 2017.
95. V. B. Gadhavi, S. Degadwala, and D. Vyas, "Transfer Learning Approach For Recognizing Natural Disasters Video," in 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022, pp. 793–798.
96. V. Desai, S. Degadwala, and D. Vyas, "Multi-Categories Vehicle Detection For Urban Traffic Management," in 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), 2023, pp. 1486–1490.