

Efficacy of an Alcohol Solution Prepared From the Roots of the Horse in Wounds of Horses

Kuliev Bokhodir associate professor

Akhmedov Sunnat Mukhiddinovich assistant

Samarkand State University of Veterinary Medicine, Animal Husbandry and Biotechnology

Annotation. In the article, the effectiveness of an alcohol solution prepared from the root of the mullein in the treatment of wounds is clearly explained through experiments and observations.

Keywords. Wound, blanket, alcohol solution, purulent wound, hoof wounds, pathological plane.

Enter. Animal husbandry is one of the main industries in our republic. The development of this area requires the efficient use of pastures, hills and deserts, improvement of their land reclamation, and planting of nutritious crops adapted to the desert climate. More desert food plants include: wormwood, sedge, wild grass, sedge, and other plants.

In the following years, scientists in our Republic also created flanorin, which protects liver function, sinaroside drugs, which are widely used in the treatment of kidney diseases, and kufestrol, which has an estrogenic effect, from several plants belonging to the Ferula L family.

Examination of the terpenoid compounds found in the composition of the cowberry plant showed the following: In Sorodesma, one of the oldest species of cowberry, it was found that coumarin was present, and in all other species, terpenoid coumarins and sesquitorpene lactones were found, while in some Pencedonoides, complex esters were the majority.

The history of the spread of the blanket is very complex, and a lot of positive work has been done to spread it widely. In the IV century BC, there is information that the stinky rug was widespread in North Africa. Later, as a result of extracting sap from its roots, it gradually began to decrease and completely disappeared in some regions.

As a result of pressing the hooves and toes on the wrong ground, the shape of the hooves is distorted and deformed. In addition, hoof deformation is caused by improper keeping of cattle that does not meet zoohygienic requirements, hypokenesis, in some hoof and toe diseases when the balance of nutrition is disturbed, erosion of the hoof capsule, and violation of the norm of growth and erosion of new hoof capsule tissues.

The general and local reactivity of the body depends on the elimination of the influencing factors. If the strength of strong stimulating factors is reduced, it affects the neurohumoral system and the general condition of the organism. This improves the general condition of the body and ensures normal wound healing. Therefore, the injury should not be considered only as a local disorder, but the whole organism is more or less involved. Therefore, the wound process should

be considered as a wound disease. It follows that the treatment of the wound should be general, not just local.

Research object and methods. Inspections and experiments were carried out at the Department of Animal Anatomy, Histology and Pathological Anatomy of the Faculty of Veterinary Prevention and Treatment of SamDVMChBU, at the farm "Guliston", Samarkand district.

Analysis of the obtained results. For the experiments, 6 cows of the red Estonian breed, 3-4 years old, infected with hoof disease were selected and divided into 2 groups of 3 heads. The first control group and the second experimental group were divided.

Experiments were mainly based on clinical symptoms, general and special examinations, observation, palpation, passive and active movement methods, breathing and heart rate, general body temperature, hot bath, probing, puncture and other methods were used.

After mechanical treatment of the first experimental group, hoof wound was surgically opened and bathed with 5% creolin solution. The depth of the hoof wound was determined using a probe and bandaged with Vishnevsky ointment. On the sixth day of the experiment, "Levomikol" ointment was used instead of Vishnevsky ointment. Volar nerves were injected with 80% 4ml Gentamicin + 5ml 0.5% novocaine + 3ml dexamethasone in one syringe once every two days and injected from two points. Bicillin-5 was dissolved in physiological solution and injected intramuscularly every two days, once a day.

In the second experimental group - after mechanical treatment of hoof wound, bath with 5% solution of creolin in water, pus-flowing wound was opened wider, and tampon moistened with alcohol solution prepared from the root of the cow's root was bandaged. Volar nerves 80% Gentamicin 4ml + 0.5% Novocaine 5ml + 3ml Dexamethasone drugs were taken in one syringe and injected from two points. Such treatments were performed once every two days (compound injection was performed 3 times). Bicillin-5 was dissolved in physiological solution and injected intramuscularly once a day every two days.

During the experiment, the total body temperature of the three animals in the control group 1 - during the clinical examination before the experiment, the total body temperature of the animals was 38.6, the respiration rate was 36, and the number of heartbeats was 86. It was found that there is local temperature and pain in the hooves, it limps strongly when moving, pus mixed with blood flows from the hoof wound. There is a lot of pathological tissue around the pathological focus, pathological granulation is in the process of passing.

The clinical and morphological changes in the animals of group 2 before the experiment were as follows: the total body temperature of the animals was 39.7, the breathing rate was 37, the heart rate was 88. It was found that the deformed hooves had high local temperature and severe pain. Limping is invisible when animals walk. Hoof wounds are oozing with blood and pus. Pathological granulation tissue was found around the pathological focus.

The obtained results show that on the 3rd day of the experiment, the total body temperature of the first control group of animals was 38.5, the pulse rate was 86, and 35 animals had a strong limp. In the pathological center with high local temperature and severe pain in the hoof, there is pathological granulation tissue at the base of the hoof with slightly reduced pus discharge. Hoofs contain dead tissue.

On the sixth day of the experiment, the general condition of the animals in group 1 is satisfactory, there is local temperature and pain in the hoof, there is blood and a little pus in the pathological focus, and the pathological granulation tissue is unchanged.

On the ninth day of the experiment, the general condition of the animals is satisfactory, the local temperature and pain in the hoof have decreased slightly, the animal limps a little while walking, the blood-mixed pus discharge has somewhat decreased in the pathological focus, and granulation tissue is growing from the wound at the base of the hoof. On the twelfth day of the experiment - the general condition of the animals is satisfactory, the local temperature and pain in the hoof have decreased even more, the animal limps a little when walking, the blood-mixed pus has stopped flowing in the pathological focus, the tissue is granulating from the wound at the base of the hoof.

On the fifteenth day of the experiment, the general condition of the animals was satisfactory, the local temperature and pain in the hooves disappeared, the signs of lameness disappeared when the animal walked, the blood-mixed pus flow stopped in the pathological focus, and the wound at the base of the hoof was covered with granulation tissue and formed a black scab.

During the experiment, during the clinical examination of the three animals in group 2, the total body temperature of the animals was 39.8, the respiration rate was 37, and the number of heartbeats was 88. It was found that there is local temperature and pain in the hooves, there is a strong limp when moving, pus mixed with blood is flowing from the hoof wound. There is a lot of pathological tissue around the pathological focus, pathological granulation is in the process of passing.

On the 3rd day of the experiment, the total body temperature of the second control group of animals was 39.5, the pulse rate was 85, and 35 animals had a strong limp. In the pathological center with high local temperature and severe pain in the hoof, there is pathological granulation tissue at the base of the hoof with a slight decrease in pus discharge. Hoofs contain dead tissue.

On the sixth day of the experiment, group 2 animals had a total body temperature of 39.0, a pulse rate of 78, and a respiratory rate of 31. The general condition of the animal is improving, the local temperature and pain in the hoof have decreased, the pathological granulation tissue with less pus has decreased.

On the ninth day of the experiment, the general condition of the animals improved significantly, the local temperature and pain in the hoof decreased, the animal limped a little when walking, and granulation tissue was growing from the wound at the base of the hoof.

On the twelfth day of the experiment, granulation tissue is growing at the base of the animal's hoof, and the hoof has closed the wound hole.

Summary. In the second experimental group - after mechanical treatment of hoof wound, bath with 5% creolin solution in water, tampon moistened with prepared blanket extract and bandaged. + In the group that received 3 ml of dexamethasone in a single syringe and bicillin-5 was injected intramuscularly, the healing of hoof wounds was reduced by 3 days.

Used literature.

1. Кретинан В. К., Кулеков В. Т., Петров В. А. "Основы ветеринарии" Москва Колос. 2006.
2. Маматханова М.А., Халилов Р.М., Котенко Л.Д., Маматханов А.У. Изучение процесса экстракции суммы сложных эфиров из Ферула кухистаниса Узбекский химический журнал. Ташкент, 2011. - № 4. – С. 18-22.
3. Mukhitdinovich, A. S., Suvonovich, D. A., & Amridinovich, K. B. (2023). Pathogistological changes in organs in sheep paramphistomatosis. Conferencea, 113-117.

4. Mukhitdinovich, A. S. (2023). Clinical signs of sheep paramphistomatosis. *American Journal of Pedagogical and Educational Research*, 12, 47-50.
5. Mukhitdinovich, A. S., Suvonovich, D. A., & Amridinovich, K. B. (2023). Pathogistological changes in organs in sheep paramphistomatosis. *Conferencea*, 113-117.
6. Кулиев, Б. А., Ахмедов, С. М., & Мухтаров, Э. А. (2022). Патоморфология пневмоний у ягнят каракульской породы. *Journal of new century innovations*, 17(4), 146-154.
7. Akhmedov, S. M., Daminov, A. S., & Kuliev, B. A. (2023). Episotological monitoring of sheep paramphistomatosis in different biogeocenoses of Samarkand region. *Экономика и социум*, (5-1 (108)), 14-17.
8. Mukhitdinovich, A. S. (2023). Clinical signs of sheep paramphistomatosis. *American journal of pedagogical and educational research*, 12, 47-50.
9. Mukhitdinovich, A. S. (2023). Morphofunction changes in sheep paramphistomatosis. *Conferencea*, 31-34.
10. Axmedov, S. M., Daminov, A. S., & Kuliyev, B. A. Paramfistomatozda qo 'ylar ichki organlaridagi patanatomik va patogistologik o 'zgarishlar. *International journal of agrobiotechnology and Veterinary Medicine*.
11. Axmedov, S., Daminov, A., Kuliyev, B., & Bobonazarov, E. (2022). Патогенез, диагностика, лечение и профилактика парамфистоматоза. (По литературным данным). *Вестник ветеринарии и животноводства (ssuv. uz)*, 2(2).
12. BA Kuliyev, SM Akhmedov. *Pathomorphology of hemorrhagic septisemia disease in rabbits* Ethiopian International Journal of Multidisciplinary Research Том 10, Номер 12, Страницы 256-262
13. B Kuliev, S Akhmedov. *Pathomorphological diagnostics of colibacterios, salmonellios and pasterellios diseases of animals* International Multidisciplinary Journal for Research & Development 2023.
14. BA Кулиев, СМ Ахмедова,. *Патоморфологические изменения при кокцидиозе кроликов* international scientific conference" scientific advances and innovative approaches" том 1, Номер 5, Страницы 12-18
15. Кулиев, Б., & Ахмедов, А. С. (2023, November). Судебно-ветеринарное экспертиза шерстяного волокна животных. *In international scientific conference" scientific advances and innovative approaches" (Vol. 1, No. 5, pp. 5-11)*.
16. Kuliev, B., & Mukhitdinovich, A. S. (2024). Injuries in Working and Sport Horses. *Intersections of Faith and Culture: American Journal of Religious and Cultural Studies* (2993-2599), 2(2), 13-19.
17. Bakirov, B. B., & Ro'zqulov, N. B. (2018). Yosh hayvonlar va parrandalarning yuqumsiz kasalliklari. *O'quv uslubiy qo 'llanma. Samarcand*.
18. 7. Baxtiyar, B., Nuriddin, R., Oybek, B., & Xokimjon, K. (2017). Etiopathogenesis, hepatogenetic implications and early diagnosis of disorders of protein metabolism in productive animals in Uzbekistan conditions. *IJAR*, 3(2), 272-277.
19. 8. Bakirov, B., Ruzikulov, N. B., Boboev, O. R., & Ergashev, M. (2022). Endocrine properties of metabolic disorders in productive cattle in Uzbekistan. *In world science: problems and innovations* (pp. 250-252).
20. 9. Бакиров, Б., Рўзиқулов, Н. Б., & Асқаров, С. С. (2018). Метаболик гепатодистрофия касаллигининг назарий ва илмий талқини. *Глобальная наука и инновация 2020: центральная азия*, 50.

21. 10. Bakirov, B., & Ro'ziqulov, N. B. (2022). Mahsuldor qoramollarda katta qorin atsidozining yil fasllari bo 'yicha uchrash darajasi. *Agrobiotexnologiya va veterinariya tibbiyoti ilmiy jurnali*, 278-281.
22. 11. Norboev, K. N., Rakhmonov, U. A., Ruzikulov, N. B., & Eshburiev, S. B. (2022). Effectiveness of Vitaprem and Probiotic Bio-3s in Group-Prophylaxis of Hens' Hypovitaminoses. *International Journal of Multicultural and Multireligious Understanding*, 9(11), 308-314.
23. 12. Ruzikulov, N. B. (2021). Main causes and development mechanisms of Karakol sheep Ketonuria. *Asian Journal of Multidimensional Research (AJMR)*, 10(3), 556-559.
24. 13. Rakhmonov, U. A., Norboev, K. N., Ruzikulov, N. B., & Eshburiev, S. B. (2021). Results of group-prophylactic treatment of chicken hypovitaminosis. *ACADEMICIA: An International Multidisciplinary Research Journal*, 11(8), 243-248.
25. 14. Bakirov, B., Ruzikulov, N. B., & Haitov, N. (2015). Method of complex dysancerization of cows and sheep. *Certificate the deposit of intellectual property. Registration*, 29(01), 2273.
26. Ro'ziqulov, N. B. Yosh hayvonlar va parrandalar terapiyasi. Darslik. Toshkent, "Fan ziyyosi", 2021.
27. Бакиров, Б. Б., & Рўзиқулов, Н. Б. (2015). Ҳайвонларнинг ички юқумсиз касалликлари фанидан лаборатория машғулотларни бажариш бўйича услубий қўлланма. *Самарқанд: "Ф. Насимов" ХК*.
28. Bakirov, B., & Ruzikulov, N. B. Status of protein and carbohydrate metabolism in dairy cows at hepatodystrophy. In *Proceedings of the international scientific conference on the pathophysiology of animals dedicated to the*.
29. Asqarov, S. S., Yunusov, X. B., & Ro'ziqulov, N. B. (2023). Qo 'zilar dispepsiyasining klinik belgilari va ularning etiopatogenetik asoslari. *Veterinariya meditsinasi*, (8), 18-19.
30. Бакиров, Б., Рўзиқулов, Н. Б., & Даминов, А. С. (2017). ва б. лар. Ҳайвонлар касалликлари. Маълумотнома (Ўқув қўлланма). *Самарқанд: "Насимов" ХК*, 600.
31. Ишниязова, Ш. А., & Рузикулов, Н. Б. (2021). Содержание токсикантов в органах и тканях рыб. *Вестник ветеринарии и животноводства*, 1(1).
32. Ishniyazova, S., & Ruzikulov, N. (2021). Содержание токсикантов в органах и тканях рыб. *Вестник ветеринарии и животноводства (ssuv. uz)*, 1(1).
33. Ro'ziqulov, N. (2021). Yosh hayvonlar va parrandalar terapiyasi. "Fan ziyyosi" nashriyoti.
34. Ruzikulov, N. B. Yosh hayvonlar va parrandalar terapiyasi. 2021. 1-212.
35. Ruzikulov, N., Askarov, S., Rasulov, N., & Boboev, O. (2022). Results of treatment of lambs dysepspsy. In *Наука и просвещение: актуальные вопросы, достижения и инновации* (pp. 226-229).
36. Gulyamovich, M., & Hakimovich, I. B. (2021). Morphofunctional properties of the adrenal glands of rabbits. *Webology (ISSN: 1735-188X)*, 18(1), 19-24.
37. Karimov, N. Z. (2022). MG, Ibragimov B. Kh. Toxic Effect of Gossypol-Containing Food on Chickens. *Jundishapur Journal of Microbiology Research Article Published online*, 7252-7257.
38. Бузмаков, А. В., Асадчиков, В. Е., Золотов, Д. А., Чукалина, М. В., Ингачева, А. С., & Кривоносов, Ю. С. (2019). Лабораторные рентгеновские микротомографы: методы предобработки экспериментальных данных. *Известия Российской академии наук. Серия физическая*, 83(2), 194-197.

39. Каримов, М. Г., Избасаров, У. К., & Каримов, Ж. М. (2021). Применение отечественных фитопрепаратов при травматических повреждениях у лошадей.

40. Тошмурадов, Ж. Т., Очилов, У. А., & Каримов, М. Г. (2021). Лечение ран пальцев лошадей.

41. Мадрахимов, Ш. Н., Амиров, Ш. К., Нурбаев, Э. Д., Садиков, Д. Р., Каримов, М. Г., & Бегматов, С. Х. (2023). Қорабайир зотли наслли айғирларнинг экстеръер хусусиятлари. *Academic research in educational sciences*, 4(1), 122-130.

42. Karimov, M. G., Saparov, A. R., Tuhtayeva, S. O., & Ahmedova, U. S. (2023). Morphological Indicators of Blood in Aseptic Inflammation of Joints in Horses. *Nexus: Journal of Advances Studies of Engineering Science*, 2(2), 61-63.

43. Ro'ziqukov, N. (2021). Yosh hayvonlar va parrandalar terapiyasi. "Fan ziyosi" nashriyoti.

44. Ruzikulov, N. B. Yosh hayvonlar va parrandalar terapiyasi. 2021. 1-212.

45. Ruzikulov, N., Askarov, S., Rasulov, N., & Boboev, O. (2022). Results of treatment of lambs dysepspsy. In *Наука и просвещение: актуальные вопросы, достижения и инновации* (pp. 226-229).

46. Ro'ziqukov, N. Ichki yuqumsiz kasalliklar fanidan laboratoriya mashg'ulotlarini bajarish bo'yicha uslubiy qo'llanma. Samarqand: "Sogdiana ideal print" bosmaxona, 2023.

47. Bakirov, B., Ruzikulov, N. B., Asqarov, S. S., & Xudoyqulov, I. Yosh hayvonlar bronhopnevmoniyasiga qarshi kurash chora-tadbirlari bo'yicha tavsiyanoma. Samarqand: «Sogdiana ideal print», 2023.

48. Бакиров, Б. Б., & Рўзиқулов, Н. Б. (2011). Ички юқумсиз касалликлар фанидан босқич ишини бажариш бўйича услубий кўрсатма. *Самарқанд: "Ф. Насимов" ХК*.

49. Ro'ziqukov, N. B. Yosh hayvonlar va parrandalar terapiyasi" darslik. *Toshkent-2021 "Fan ziyosi" nashriyoti*, 81-90.

50. Ro'ziqukov, N. (2023). Ichki yuqumsiz kasalliklar fanidan laboratoriya mashg'ulotlarini bajarish bo'yicha uslubiy qo'llanma. "Sogdiana ideal print" bosmaxona.

51. Bakirov B., Safarov M.B., Ro'ziqukov N.B. Klinik diagnostika. Ichki yuqumsiz kasalliklar. Darslik. "Fan ziyosi" nashriyoti, Toshkent, 2023. 296 bet.

52. Ro'ziqukov N.B. Yosh hayvonlar va parrandalar terapiyasi. Darslik. 2-nashr. "Fan ziyosi" nashriyoti, Toshkent, 2023. 232 bet.

53. Ro'ziqukov N.B. Yosh hayvonlar kasalliklari. O'quv qo'llanma. "Fan ziyosi" nashriyoti, Toshkent, 2023. 148 bet.

54. Рўзиқулов Н.Б. Соғин сигирларда жигар дистрофиясини гурухли профилактик даволаш чора-тадбирлари. Монография. "Фан зиёси" нашриёти, Тошкент, 2024. 128 бет.

55. Юнусов, Х., Рузиков, Н., & Аскаров, С. (2023). Этиопатогенез и лечение диспепсии ягнят. *Вестник Ошского государственного университета. Сельское хозяйство: агрономия, ветеринария и зоотехния*, (4 (5)), 75-79.

56. Bakirov, B., Ruzikulov, N. B., Kambaralieva, M., & Khasanova, P. (2024). Level of Carbohydrate Metabolism in Cows in Uzbekistan Conditions. *Intersections of Faith and Culture: American Journal of Religious and Cultural Studies* (2993-2599), 2(2), 28-33.

57. Ruzikulov, N. B., Bakirov, B., Khasanova, P., & Kambaralieva, M. (2024). Level of Protein Metabolism in Cows in Uzbekistan Conditions. *Intersections of Faith and Culture: American Journal of Religious and Cultural Studies* (2993-2599), 2(2), 34-38.

58. Xasanova, P., & Ro'ziqukov, N. B. (2024). Sog'in sigirlarda jigar patologiyasining tarqalish holati va sabablari. *Образование наука и инновационные идеи в мире*, 36(6), 117-120.

59. Qambaraliyeva, M., & Ro‘zqulov, N. B. (2024). Sog‘in cigirlarda jigar distrofiyasi paytida oqsillar almashinuvining holati. *Образование наука и инновационные идеи в мире*, 36(6), 109-112.
60. Qambaraliyeva, M., & Ro‘zqulov, N. B. (2024). Sog‘in sigirlarda jigar distrofiyasi paytida uglevodlar almashinuvining holati. *Образование наука и инновационные идеи в мире*, 36(6), 113-116.