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Abstract: The integration of artificial intelligence (AI), particularly deep learning, has 

significantly advanced disease diagnosis and clinical decision making. This study evaluates the 

performance of five prominent deep learning architectures MobileNetV1, ResNet50, AlexNet, 

DenseNet201, and Inception v2for classifying colon adenocarcinoma versus benign colon tissue, 

a task essential for effective colon cancer management. Using a dataset of 3,000 

histopathological images, each model was trained and tested to assess classification accuracy. 

Among the evaluated models, MobileNetV1 and AlexNet demonstrated the highest performance, 

achieving test accuracies of 96.33% and 95.67%, respectively. In contrast, ResNet50 and 

DenseNet201 showed comparatively lower accuracies of 85.80% and 87.40%, while Inception 

v2 reached 92.87%. These findings underscore the strong potential of lightweight architectures 

particularly MobileNetV1 and AlexNet in improving colon cancer detection and supporting 

clinical workflows. Future work will explore additional model architectures, evaluation metrics, 

and optimization techniques to further enhance diagnostic reliability. This study contributes to 

the expanding body of research on AI driven oncology, highlighting deep learning’s role in 

advancing early and accurate cancer classification. 

Keywords: Artificial intelligence, Deep Learning, Healthcare, Colon Adenocarcinoma, Benign 

tissue, Histopathological images, Oncology. 

 

INTRODUCTION: 

Artificial intelligence (AI) has become a transformative force in modern healthcare, driving 

significant advancements in diagnostic accuracy and clinical decision making. Among the 

various branches of AI, deep learning has shown exceptional capability in analyzing complex 

medical data, particularly within oncology. Colon cancer one of the leading causes of cancer 

related morbidity and mortality worldwide presents a compelling domain for the application of 
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deep learning based diagnostic tools. Accurate classification of colon cancer subtypes is essential 

for selecting appropriate treatment strategies and predicting patient outcomes. 

Traditional diagnostic approaches rely heavily on manual examination of histopathological 

images, a process that is time consuming, subjective, and prone to inter observer variability. 

Deep learning models, however, offer an automated and highly scalable alternative by learning 

discriminative features directly from large datasets and identifying subtle morphological patterns 

that may be overlooked by the human eye. This study conducts a comprehensive evaluation of 

five deep learning architectures MobileNetV1, ResNet50, AlexNet, DenseNet201, and Inception 

v2 in their ability to distinguish colon adenocarcinoma from benign colon tissue. Using a dataset 

of 3,000 histopathological images equally divided between the two classes, each model was 

trained, validated, and assessed using key performance metrics, including accuracy, precision, 

recall, F1 score, and Cohen’s Kappa score. 

The goal of this research extends beyond identifying the highest performing model. By 

systematically comparing these architectures, we aim to contribute to the ongoing discussion on 

the role of AI in modern healthcare, highlight the strengths and limitations of different deep 

learning approaches, and identify future opportunities for model optimization. Ultimately, this 

investigation underscores the transformative potential of deep learning in colon cancer 

classification and supports its integration into clinical workflows to improve diagnostic 

precision, treatment planning, and patient outcomes. This work represents a step toward a future 

in which AI powered tools are seamlessly embedded into healthcare systems, advancing the 

quality of care for patients worldwide. 

LITERARY SURVEY: 

Lim et al. (2017) [1] conducted a comparative analysis of oncological outcomes between right-

sided and left-sided colon cancers following curative resection, revealing significant survival 

differences and underscoring the importance of tumor laterality in prognosis and treatment 

planning. Complementing this perspective, Sears and Garrett (2014) [2] provided an extensive 

review on the role of gut microbiota in colon cancer development, highlighting the intricate 

interactions among microbial communities, immune responses, and tumorigenesis, and 

emphasizing the emerging therapeutic value of microbiome modulation. 

Zhao et al. (2020) [3] further explored the prognostic significance of tumor laterality in 

synchronous metastatic colon cancer using National Cancer Database records, reinforcing the 

clinical relevance of tumor location. De Sousa e Melo et al. (2017) [4] identified the role of 

Lgr5+ stem cells in primary and metastatic colon cancer, revealing heterogeneity within cancer 

stem cell populations and suggesting new directions for stem-cell-targeted therapies. Similarly, 

Shimokawa et al. (2017) [5] developed innovative methods for visualizing and targeting LGR5+ 

colon cancer stem cells, strengthening their importance as therapeutic targets. 

The molecular mechanisms of colon cancer progression were investigated by Zhou et al. (2018) 

[6], who demonstrated the role of Caspase-3 in regulating migration, invasion, and metastasis. 

Wang et al. (2019) [7] studied the radiosensitivity of colon cancer cells through the inhibition of 

circCCDC66, revealing circRNAs as promising targets for enhancing radiotherapy. Urosevic et 

al. (2014) [8] uncovered a previously unknown pathway by which colon cancer cells metastasize 

from liver to lung through p38 MAPK signaling and PTHLH, adding depth to the understanding 

of metastatic cascades. 

Jahanafrooz et al. (2020) [9] reviewed colon cancer stem cells and their surrounding 

microenvironment, outlining therapeutic strategies aimed at disrupting stem cell niches. 

Tauriello et al. (2018) [10] demonstrated that TGFβ facilitates immune evasion in colon cancer 

metastasis, offering insights into immunotherapeutic strategies. Aiello et al. (2019) [11] 

evaluated preoperative immunonutritional support in malnourished cancer patients, emphasizing 

the importance of nutritional status in surgical recovery and prognosis. 
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Kuipers et al. (2015) [12] provided a comprehensive overview of colorectal cancer, covering 

epidemiology, molecular pathways, and treatment modalities. In the context of immunotherapy, 

Tan et al. (2019) [13] demonstrated the potential of dendritic cell–based vaccines, while Fan et 

al. (2022) [14] studied the immune microenvironment in colorectal cancer liver metastasis, 

identifying possible therapeutic targets. Derer et al. (2016) [15] reviewed immune checkpoint 

inhibitors in colorectal cancer, highlighting their expanding clinical relevance. Abdalla et al. 

(2023) [16] emphasized the prognostic and therapeutic importance of Microsatellite Instability 

(MSI), supporting precision medicine approaches. 

Petrelli et al. (2017) [17] conducted a meta-analysis on the effect of tumor location on survival in 

metastatic colorectal cancer, confirming its role as a key prognostic factor. Ahmed et al. (2023) 

[18] reviewed the molecular genetics of colorectal cancer, shedding light on its complex 

genomic landscape. A groundbreaking study by Le et al. (2017) [19] demonstrated that 

mismatch-repair deficiency predicts responsiveness to PD-1 blockade, marking a major advance 

in immunotherapy. Similarly, Llosa et al. (2023) [20] reviewed the influence of the tumor 

microenvironment on disease progression and therapy response. 

Atreya et al. (2018) [21] investigated key signaling pathways particularly Wnt/β-catenin in 

colorectal cancer progression, identifying potential therapeutic targets. Prasetyanti et al. (2019) 

[22] focused on colorectal cancer stem cells, advocating for stem-cell-targeted treatment 

strategies. Overman et al. (2018) [23] demonstrated the effectiveness of nivolumab in mismatch-

repair-deficient metastatic colorectal cancer, providing strong evidence for immunotherapy. 

Goldberg et al. (2016) [24] evaluated first-line therapies for metastatic colorectal cancer and 

highlighted the need for individualized treatment selection. 

Lenz et al. (2021) [25] reviewed emerging biomarkers in colorectal cancer, predicting a future 

driven by personalized treatment strategies. Grothey et al. (2013) [26] evaluated anti-angiogenic 

therapies and their role in improving survival outcomes. Vlachogiannis et al. (2018) [27] 

introduced patient-derived organoids as predictive tools for treatment response, promoting their 

use in personalized oncology. Bettegowda et al. (2014) [28] provided early evidence supporting 

circulating tumor DNA (ctDNA) as a non-invasive biomarker for detection and treatment 

monitoring. 

Saltz et al. (2008) [29] assessed quality-of-life outcomes in metastatic colorectal cancer 

treatment, stressing the need for therapies that maintain or enhance patient well-being. 

Heinemann et al. (2014) [30] compared chemotherapy regimens in metastatic disease, 

contributing to evidence-based clinical decision-making. 

Recent interdisciplinary studies extend the discussion of AI and digital health. Sobur et al. 

(2023) [31] examined defenses against physical and cyber social engineering attacks, 

highlighting the evolving threat landscape. Ghosh et al. (2024) [32] reviewed machine learning 

and deep learning methods for skin cancer detection, demonstrating significant diagnostic 

advancements. Kabir et al. (2023) [33] applied machine learning to Walmart retail data, showing 

practical applications of AI in business analytics. Islam et al. (2023) [34] addressed the human 

rights impacts of cyberbullying on children. Kabir, Sobur, and Amin (2023) [35] developed a 

machine learning model for stock-price prediction. Rana, Kabir, and Sobur (2023) [36] 

compared machine learning error rates using the MNIST dataset, aiding optimal model selection. 

Panda et al. (2024) [37] advanced deep learning applications in lung tissue classification, while 

Rahat et al. (2024) [38] proposed DL models for automated blood cell detection, expanding the 

capabilities of computational hematology. 

3 METHODOLOGIES: 

3.1 Dataset Overview: 

The dataset employed in this study consists of 3,000 high-quality histopathological images 

curated specifically for colon cancer analysis. The images are evenly distributed between two 
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classes colon adenocarcinoma and benign colon tissue with 1,500 samples in each category. 

This balanced class distribution ensures fair evaluation and prevents bias during model training 

and performance comparison. 

Each image is provided at a resolution of 768 × 768 pixels in JPEG format, offering sufficient 

detail for deep learning models to capture subtle morphological patterns within the tissue 

samples. The images were obtained from HIPAA-compliant, validated medical imaging 

repositories, ensuring both the reliability and authenticity of the dataset. 

The use of histopathological images is especially relevant in colon cancer diagnostics. 

Histopathology remains the gold standard for identifying cellular abnormalities, distinguishing 

malignant adenocarcinoma from benign tissue structures, and guiding clinical decision-making. 

By training on such data, deep learning models learn to recognize real-world microscopic 

patterns encountered in routine clinical workflows. 

For model development, the dataset was divided into training, validation, and testing subsets. 

➢ The training set enabled the models to learn discriminative features. 

➢ The validation set was used to fine-tune parameters and prevent overfitting. 

➢ The testing set provided an unbiased evaluation of model performance on previously unseen 

images. 

Overall, the dataset offers a comprehensive and dependable foundation for assessing multiple 

deep learning architectures in the classification of colon cancer. Its use of authentic 

histopathological images enhances the clinical relevance of the study and supports the 

development of models capable of operating effectively in real-world medical environments 

[Fig. 1]. 

 

3.2 Data Preprocessing 

3.2.1 Image Resizing 

Image resizing is a fundamental preprocessing step in computer vision and is essential for 

preparing images for deep learning models, which require inputs of uniform dimensions. 

Resizing ensures consistency across the dataset while preserving the structural details necessary 

for accurate classification of histopathological images. 

For this study on colon cancer classification, several interpolation techniques were considered: 

➢ Nearest Neighbor Interpolation: 

This method assigns each pixel in the resized image the value of the nearest pixel from the 

original image. Although computationally efficient, it may produce images with reduced 
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sharpness and detail, potentially affecting model performance on high-resolution medical 

images. 

➢ Bicubic Interpolation: 

Bicubic interpolation uses the values of pixels in a 4×4 neighborhood to generate smoother and 

more detailed resized images. Its higher computational cost is offset by improved image quality, 

making it suitable for medical imaging tasks requiring fine-grained feature visibility. 

➢ Area-Based (Resampling) Interpolation: 

This technique computes the average pixel value within a sampling area, making it especially 

effective for downscaling high-resolution images. It preserves overall color distribution and 

structural integrity, which is advantageous for histopathological images. 

➢ Lanczos Resampling: 

Using a sinc-based kernel, Lanczos resampling delivers high-quality results and helps retain 

detailed textures. It is computationally intensive but particularly effective when detail 

preservation is critical an important factor in analyzing microscopic tissue patterns. 

The choice of interpolation method was guided by the need to balance computational efficiency 

with the preservation of diagnostic features. Since colon cancer classification relies on subtle 

texture and pattern recognition, higher-quality interpolation techniques were prioritized. 

3.2.2 Image Normalization 

Image normalization adjusts pixel intensities to a standardized range or distribution, promoting 

faster convergence and stable learning during model training. It also mitigates the impact of 

varying illumination and contrast across images. 

The following normalization methods were evaluated: 

➢ Min-Max Normalization:\ 

This technique scales pixel values to a fixed interval, typically [0, 1]or [−1,1], by subtracting the 

minimum and dividing by the range of values. It preserves original image structure while 

reducing computational burden, making it well-suited for the high-resolution histopathological 

images used in this study. 

➢ Z-Score (Standard Score) Normalization: 

Z-score normalization standardizes pixel values to a mean of 0 and standard deviation of 1. This 

method is effective when pixel intensities follow a Gaussian distribution and can significantly 

accelerate model convergence. It was used in this study to ensure stable and optimized training 

performance. 

➢ Decimal Scaling: 

This method scales pixel values by shifting decimal points based on the maximum absolute value 

of the dataset. Although simple, it is less commonly applied in medical imaging and was not 

implemented in this study due to the uniformity and controlled intensity range of the dataset. 

Selection of the normalization strategy depended on the dataset characteristics and model 

requirements. Methods that retained fine visual details critical in histopathology were favored. 

3.2.3 Image Data Augmentation 

Image data augmentation enhances dataset diversity by generating modified versions of existing 

images. This helps prevent overfitting and improves model generalization, especially in medical 

imaging tasks where acquiring large datasets can be challenging. 

The augmentation techniques considered in this study include: 
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➢ Rotation: 

Rotating images by small angles improves the model’s ability to recognize tissue patterns 

irrespective of orientation. 

➢ Translation: 

Horizontal and vertical shifts help the model learn invariance to spatial positioning, ensuring 

robustness to variations in tissue cropping or placement. 

➢ Scaling: 

Adjusting the size of the image assists in recognizing features across different magnifications. 

➢ Flipping: 

Horizontal or vertical flips introduce mirrored variations, improving model robustness to 

orientation changes. 

➢ Brightness Adjustment: 

Modifying brightness simulates differences in staining intensity and lighting conditions, 

enhancing the model’s resilience to real-world imaging variability. 

➢ Noise Injection: 

Adding random noise mimics real-world artifacts, helping the model learn to extract meaningful 

features even in suboptimal imaging conditions. 

➢ Cropping: 

Random or center cropping helps the model focus on salient tissue regions, especially when key 

structures occupy smaller areas of the image. 

The choice of augmentation methods was guided by the histopathological characteristics of the 

dataset and the need to improve model robustness without distorting clinically meaningful 

features. By expanding dataset variability, augmentation contributed significantly to enhancing 

model generalizability and improving classification accuracy on unseen data. 

3.2.4 Image Label Encoding 

Image label encoding is an essential preprocessing step in image classification, converting 

categorical class labels into numerical formats that machine learning and deep learning models 

can interpret. Several encoding strategies can be employed, depending on the nature of the 

dataset and the model’s requirements: 

➢ One-Hot Encoding: 

In this method, each category is represented as a binary vector whose length corresponds to the 

total number of classes. All values are set to zero except for a single 1 indicating the respective 

class. One-hot encoding is highly suitable for nominal categories without an inherent order, and 

it prevents the model from interpreting unintended ordinal relationships among classes. 

➢ Ordinal Encoding: 

This technique assigns a unique integer value to each category. Although computationally 

simple, ordinal encoding may introduce an artificial sense of order between classes making it 

inappropriate for nominal categories unless the model can handle such biases. It is most effective 

when the categories have a true ordinal relationship. 

➢ Label Encoding: 

Similar to ordinal encoding, label encoding assigns integer values to categories, often based on 

alphabetical or predefined ordering. This technique is beneficial for datasets with ordinal labels, 

but for nominal classes, it may cause the model to infer a false hierarchy. 
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➢ Binary Encoding: 

Binary encoding combines ordinal and one-hot encoding by first converting categories to 

integers and then representing those integers in binary form. This reduces dimensionality 

compared to one-hot encoding, making it advantageous when dealing with many classes. 

The choice of encoding technique depends on the nature of the labels and computational 

considerations. For binary classification tasks such as distinguishing colon adenocarcinoma from 

benign colon tissue one-hot encoding or simple label encoding is typically most appropriate. 

Effective label encoding ensures that the model correctly associates images with their respective 

classes, enhancing performance on unseen data. 

4. Comparison of Models 

This study employed five deep learning architectures MobileNetV1, ResNet50, AlexNet, 

DenseNet201, and Inception V2 to classify colon cancer histopathological images. Each model 

was trained and evaluated on the same dataset split, enabling a consistent and fair comparison of 

their performance. The evaluation metrics included accuracy, precision, recall, F1-score, and 

Cohen’s Kappa, offering a comprehensive assessment of classification effectiveness. 

Table 1 summarizes the performance of all models across these metrics, highlighting the 

strengths and limitations of each architecture in colon cancer classification. 

 

4.1 MobileNetV1 Model 

The MobileNetV1 model demonstrated outstanding performance in classifying colon cancer 

histopathological images across the training, validation, and testing phases. During training, the 

model achieved an accuracy of 99.843%, indicating a strong ability to learn discriminative 

features and correctly classify the majority of images. This high training accuracy reflects 

MobileNetV1’s efficiency in extracting meaningful patterns from high-resolution tissue samples. 

In the validation phase, the model obtained an accuracy of 95.600%, a slight but expected 

decrease compared to the training score. The strong validation performance suggests effective 

generalization and minimal overfitting. When evaluated on the test dataset consisting of unseen 

images MobileNetV1 achieved an impressive accuracy of 96.333%, confirming its robustness 

and reliability in real-world classification scenarios. 

The model also delivered strong results across additional performance metrics. The F1-score and 

recall were both 96.333%, while precision was slightly higher at 96.378%, indicating that the 

model effectively identifies positive cases while maintaining a low rate of false positives. The 

high F1-score demonstrates a well-balanced trade-off between precision and recall. Furthermore, 

the Cohen’s Kappa score of 92.668% highlights substantial agreement between predicted 

labels and ground truth, beyond what would be expected by chance. 

Overall, MobileNetV1 consistently outperformed the other evaluated models. Its high accuracy, 

strong generalization capability, and reliable predictive performance indicate that it is well-suited 

for colon cancer classification tasks and holds promise as a practical tool for assisting 

pathologists and enhancing diagnostic workflows [Fig. 2]. 
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Fig 2: Val confusion matrix and Test Confusion matrix of model 

4.2 ResNet50 Model 

The ResNet50 model demonstrated a moderate yet reliable performance in the classification of 

colon cancer histopathological images. During the training phase, the model achieved an 

accuracy of 91.600%, indicating that it effectively learned key discriminative features from the 

dataset. This performance reflects ResNet50’s capability to extract meaningful patterns essential 

for differentiating between colon adenocarcinoma and benign tissue. In the validation phase, the 

model obtained an accuracy of 86.000%, a reasonable decrease compared to the training 

accuracy. This difference is expected since validation involves data unseen during training. The 

relatively strong validation performance suggests that the model generalizes well and avoids 

significant overfitting. When evaluated on the test dataset, ResNet50 achieved an accuracy of 

85.800%, further confirming its capacity to classify previously unseen images. Although the 

performance is lower compared to lightweight architectures such as MobileNetV1 and AlexNet, 

the results still indicate competent predictive ability. 

The model’s additional performance metrics further support its reliability. The F1-score was 

85.668%, with a recall of 85.800%, and a slightly higher precision of 87.334%. These values 

demonstrate a reasonable balance between identifying true positive cases and minimizing false 

positives. The F1-score, as the harmonic mean of precision and recall, reinforces the model’s 

consistent performance across both metrics. 

Furthermore, the Cohen’s Kappa score of 71.651% reflects substantial agreement between 

predicted and true labels beyond chance, indicating dependable classification capability. 

In summary, ResNet50 achieved solid performance across all evaluated metrics. Although its 

accuracy is lower compared to the top-performing models, it remains a valuable and dependable 

architecture for colon cancer image classification, capable of generalizing effectively to new data 

and producing consistent, reliable predictions [Fig. 3]. 

 

 

 

 

 

 

 

 

 
 

Fig 3: Val confusion matrix and Test Confusion matrix of ResNet50 model 
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4.3 AlexNet Model 

The AlexNet model demonstrated exceptionally strong performance in classifying colon cancer 

histopathological images. During the training phase, the model achieved a perfect accuracy of 

100.000%, indicating complete and effective learning from the training dataset. This flawless 

performance suggests that AlexNet successfully captured the relevant features and structural 

patterns necessary for distinguishing between adenocarcinoma and benign tissue. 

In the validation phase, the model achieved an accuracy of 94.800%, which, although slightly 

lower than the training accuracy, is expected when evaluating on previously unseen data. The 

high validation score indicates that the model generalizes well and avoids significant overfitting, 

maintaining strong predictive capability across diverse image samples. The model also 

performed impressively on the test dataset, achieving an accuracy of 95.667%. This confirms 

AlexNet’s ability to effectively classify new, unseen images and reinforces its potential for 

practical deployment in real-world diagnostic workflows. 

 

 

 

 

 

 

 

 

 

Fig 4: Val confusion matrix and Test Confusion matrix of AlexNet model 

4.4 DenseNet201 Model 

The DenseNet201 model demonstrated solid performance in the classification of colon cancer 

histopathological images. During training, the model achieved a perfect accuracy of 100.000%, 

indicating that it effectively learned the distinguishing features required to separate 

adenocarcinoma from benign tissue. This high training accuracy reflects DenseNet201’s strong 

feature extraction capability, particularly beneficial for complex medical imaging tasks. 

In the validation phase, the model achieved an accuracy of 87.933%, which is notably lower 

than the training score but consistent with its evaluation on unseen data. Despite this decrease, 

the validation accuracy remains strong and suggests that the model maintains acceptable 

generalization without significant overfitting. The test dataset results further support the model’s 

reliability, with a test accuracy of 87.400%. This demonstrates that DenseNet201 can accurately 

classify new, unseen images an essential requirement for real-world diagnostic applications. 

Additional performance metrics reinforce the model’s balanced behavior. The F1-score was 

87.390%, the recall was 87.400%, and precision was slightly higher at 87.568%. These values 

indicate a well-maintained equilibrium between identifying true positive cases and limiting 

classification errors. The F1-score, as the harmonic mean of precision and recall, confirms 

consistent performance across both metrics. 

The model also achieved a Cohen’s Kappa score of 74.813%, signifying substantial agreement 

between its predictions and the true labels beyond what would occur by chance. This further 

affirms the model’s reliability and predictive stability. In summary, DenseNet201 delivered a 

strong and balanced performance across all evaluated metrics. While its accuracy is lower than 

lighter architectures such as MobileNetV1 and AlexNet, it still demonstrates dependable 

classification ability and robust generalization. These results suggest that DenseNet201 remains 
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a useful deep learning architecture for colon cancer image classification and can contribute 

effectively to computational pathology workflows [Fig. 5]. 

 

 

 

 

 

 

 

 

 

Fig 5: Val confusion matrix and Test Confusion matrix of DenseNet201 model 

4.5 Inception V2 Model 

The Inception V2 model demonstrated strong performance in the classification of colon cancer 

histopathological images. During the training phase, it achieved a perfect accuracy of 100.000%, 

indicating that the model effectively learned the distinguishing patterns needed to classify 

adenocarcinoma and benign tissue samples. This exceptional training accuracy reflects Inception 

V2’s robust feature extraction capabilities, which are essential for handling the complex textures 

present in microscopic cancer imagery. 

In the validation phase, the model achieved an accuracy of 92.400%, a slight yet expected 

reduction compared to the training accuracy. Despite the drop, the validation score remains high, 

suggesting strong generalization and minimal overfitting. This confirms that the model maintains 

stable performance when exposed to previously unseen data. The test results further reinforce the 

model’s reliability, with a test accuracy of 92.867%. This strong performance indicates that 

Inception V2 is capable of accurately classifying new histopathological images, demonstrating 

its suitability for real-world diagnostic tasks. The model also performed well across additional 

key metrics. The F1-score and recall both reached 92.867%, while precision was slightly 

higher at 92.871%, indicating excellent balance between the ability to detect cancer-positive 

cases and the ability to avoid false positives. The high F1-score confirms the model’s consistent 

performance across both precision and recall. Furthermore, the Cohen’s Kappa score of 

85.733% indicates substantial agreement between predicted and ground-truth labels beyond 

chance. This high Kappa value highlights the reliability and robustness of the model’s 

predictions. 

In summary, the Inception V2 model demonstrated impressive performance across all evaluated 

metrics. Its strong accuracy, balanced precision–recall profile, and reliable agreement with true 

labels suggest that Inception V2 is a highly effective architecture for colon cancer classification. 

These results underscore its potential as a valuable tool for computational pathology and 

automated diagnostic support systems [Fig. 6]. 
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Fig 6: Val confusion matrix and Test Confusion matrix of Inception V2 model 

5. Result and Discussion 

This section presents a detailed analysis and interpretation of the performance of the five deep 

learning models MobileNetV1, ResNet50, AlexNet, DenseNet201, and Inception V2 evaluated 

for colon cancer classification. The comparison reveals meaningful insights into their 

effectiveness, generalizability, and suitability for histopathological image analysis. Overall, all 

models performed well across the evaluated metrics, demonstrating the capability of deep 

learning architectures to accurately classify colon adenocarcinoma and benign tissue. Among 

them, MobileNetV1 and Inception V2 emerged as the top performers, displaying consistently 

high scores in the training, validation, and testing phases. Their superior accuracy, F1-scores, 

and Cohen’s Kappa values underscore their reliability, robustness, and balanced precision–

recall behavior. 

The strong performance of these two models can be primarily attributed to their architectural 

strengths. MobileNetV1’s lightweight, efficiently designed depthwise separable convolutions 

enable it to capture fine-grained features while maintaining computational efficiency. Inception 

V2, an enhanced variant of the original Inception architecture, incorporates factorized 

convolutions and optimized filter arrangements that improve accuracy and reduce computational 

complexity. These design characteristics enable both models to effectively learn the complex 

textures and morphological patterns present in histopathological colon tissue. 

The findings of this study have important implications for applying deep learning to colon cancer 

classification. First, the results highlight the significant potential of AI-driven models in 

supporting early detection and diagnosis critical factors for improving patient outcomes. Second, 

the comparison demonstrates that model selection plays a crucial role, as performance varies 

across architectures depending on their feature extraction capabilities and computational 

efficiency. Third, the study emphasizes the importance of preprocessing techniques such as 

image resizing, normalization, and augmentation, all of which contributed to improved 

generalization and model stability. 

Despite the promising results, it is essential to recognize certain limitations. The optimal choice 

of model depends on factors such as computational resources, deployment environment, and the 

complexity of the dataset. Although the dataset used in this study was robust and balanced, 

performance may differ when applied to larger, more heterogeneous datasets collected from 

multiple medical centers. Future research should therefore investigate the use of expanded 

datasets, explore additional state-of-the-art architectures, and assess the impact of domain 

adaptation, transfer learning, and ensemble techniques. 

In summary, this study provides meaningful insights into the application of deep learning for 

colon cancer classification. The strong performance of MobileNetV1 and Inception V2 suggests 
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that, with appropriate preprocessing and model selection, deep learning can serve as a powerful 

tool in supporting clinical decision-making and improving diagnostic accuracy in oncology. 

Continued advancements in data quality, model optimization, and computational pathology will 

further enhance the potential of AI-driven diagnostic systems [Fig. 7].Fig.7 Deep Learning 

Models for Colon Cancer Classification 

6. Conclusion 

This study presented a comprehensive comparative analysis of five deep learning models 

MobileNetV1, ResNet50, AlexNet, DenseNet201, and Inception V2 for the classification of 

colon cancer histopathological images. The results demonstrate that all models achieved strong 

performance, confirming the suitability of deep learning approaches for medical image 

classification. Among the evaluated architectures, MobileNetV1 and Inception V2 exhibited the 

highest accuracy, precision–recall balance, and reliability across all metrics, highlighting their 

strong potential for assisting in clinical decision-making. 

The findings also reinforce the critical role of robust image preprocessing techniques, 

including resizing, normalization, and augmentation, in enhancing model performance and 

generalization. Moreover, the study emphasizes the importance of selecting an architecture well 

aligned with the task’s computational and diagnostic requirements, as performance varied 

substantially between models. 

Overall, this work demonstrates that deep learning can serve as a powerful tool in the early 

detection and diagnosis of colon cancer, potentially contributing to improved patient outcomes 

and more efficient clinical workflows. 

7. Future Work 

While this study provides valuable insights into the effectiveness of deep learning for colon 

cancer classification, several promising avenues remain open for future exploration. First, 

additional deep learning architectures such as Vision Transformers (ViTs), EfficientNet, or 

hybrid CNN-transformer models could be evaluated to further enhance classification accuracy 

and robustness. Ensemble approaches that combine predictions from multiple models also 

present opportunities for improved performance. 
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Second, future research should investigate the use of larger, multi-institutional, and more 

diverse datasets. Increasing dataset diversity can improve model generalizability and help 

ensure reliable performance across various imaging conditions, staining variations, and patient 

demographics. 

Third, integrating deep learning models with other diagnostic tools such as radiology, genomic 

data, or clinical decision-support systems may lead to more comprehensive and interpretable 

diagnostic pipelines. Combining deep learning with traditional machine learning, statistical 

modeling, or explainable AI techniques may enhance interpretability and clinical adoption. 

In summary, this research represents an important step toward advancing AI-assisted diagnostic 

capabilities for colon cancer. Continued innovation in model development, dataset expansion, 

and diagnostic system integration will further unlock the potential of deep learning in 

computational pathology and clinical oncology. 
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