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Abstract: Acute pancreatitis (AP) is a multifactorial inflammatory disease of the pancreas 

characterized by premature activation of digestive enzymes, acinar cell injury, and systemic 

inflammation. The pathogenesis of AP is tightly linked to the activation of key inflammatory 

signaling pathways and mediators that orchestrate the immune response. 
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Introduction 

The pathogenesis of acute pancreatitis is accompanied by the activation of inflammatory 

mediators, among which interleukins, tumor necrosis factor-alpha, chemokines, and free radicals 

play a key role. Their excessive release leads to the formation of a cytokine storm, causing 

damage not only to the pancreas but also to other organs. 

 

Fig. 1. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, 

and management [53] 

It is well known that cytokines such as TNF-α, IL-1β, IL-6, and IL-8 are key mediators that 

initiate the inflammatory response in the pancreas and other organs [6]. Early studies have 

demonstrated that the apoptosis of acinar cells is promoted by the release of the aforementioned 
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pro-inflammatory cytokines and their interaction with peripheral blood mononuclear cells 

(PBMCs) [17,25]. Among these pro-inflammatory cytokines, special attention should be given to 

TNF-α due to its potent recruitment of macrophages to inflamed regions in acute pancreatitis 

(AP). 

TNF-α plays a particularly significant role by promoting macrophage aggregation and 

chemotaxis to inflamed areas of the pancreas, as well as by stimulating the secretion of 

endothelial adhesion factors (PECAM-1), intercellular adhesion molecule (ICAM-1), and 

selectins by damaged endothelial cells [30,27,35,52]. 

Acute pancreatitis is a polyetiological inflammatory disease of the pancreas, characterized by 

acinar cell injury, enzyme activation, and the initiation of a powerful systemic response [2]. 

It has been proven that a cascade of interconnected signaling pathways plays a key role in the 

pathogenesis of acute pancreatitis by regulating the expression of pro-inflammatory mediators, 

leukocyte chemotaxis, and the activation of innate immunity. The most significant among these 

pathways include NF-κB, MAPK, JAK/STAT, and the NLRP3 inflammasome [22,9]. 

1. NF-κB signaling pathway 

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) is one of the central 

regulators of the inflammatory response in acute pancreatitis [11,43]. Under normal conditions, 

NF-κB resides in the cytoplasm in an inactive complex with its inhibitor IκBα. Upon stimulation 

by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns 

(DAMPs), Toll-like receptors (TLRs)—particularly TLR4—are activated, initiating the 

phosphorylation and subsequent degradation of IκBα. This process releases NF-κB dimers 

(p65/p50), which translocate into the nucleus and induce the expression of IL-1β, IL-6, TNF-α, 

iNOS, COX-2, and adhesion molecules such as ICAM-1 and VCAM-1 [34,19]. 

In the development of acute pancreatitis induced by L-arginine, nuclear factor NF-κB is detected 

in acinar cells as early as 30 minutes after induction, contributing to neutrophil recruitment, 

increased vascular permeability, and pancreatic tissue necrosis. This process establishes a vicious 

cycle of inflammation [16]. 

2. MAPK (mitogen-activated protein kinase) signaling pathway 

The MAPK (Mitogen-Activated Protein Kinases) family includes several signaling cascades—

ERK1/2, JNK (c-Jun N-terminal kinase), and p38 MAPK—which are activated through 

phosphorylation and mediate signal transduction across the cell membrane. In acute pancreatitis, 

the main activators of these pathways are oxidative stress, IL-1β, and TNF-α [26,44]. 

➢ p38 MAPK plays a key role in stabilizing the mRNA of pro-inflammatory cytokines. 

➢ JNK is involved in the induction of apoptosis and enhances the production of nitric oxide 

(NO) and reactive oxygen species (ROS) 

➢ ERK1/2 is activated by growth factor receptors and can also promote the synthesis of 

inflammatory mediators. 

Activation of MAPK signaling in acinar cells promotes the synthesis and secretion of pro-

inflammatory factors and enzymes (including trypsin), thereby exacerbating tissue damage and 

amplifying local inflammation [15,48]. 

JAK/STAT (Janus kinase/signal transducer and activator of transcription) signaling pathway. 

Upon binding of cytokines (such as IL-6, IFN-γ, and IL-10) to their specific receptors on the 

surface of immune and non-immune cells, the JAK/STAT (Janus Kinase / Signal Transducers 

and Activators of Transcription) pathway is activated [4]. 

In acute pancreatitis, activation of the IL-6/STAT3 pathway is observed both locally in the 

pancreas and systemically in organs such as the liver and lungs. This pathway promotes the 
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expression of C-reactive protein (CRP) and serum amyloid A, thereby exacerbating the acute-

phase response. 

In addition to its pro-inflammatory effects, STAT3 can also mediate anti-apoptotic and 

regenerative signals, thus playing a dual role. 

Uncontrolled hyperactivation of STAT3 may contribute to the development of systemic 

inflammatory response syndrome (SIRS) and multiple organ dysfunction [37,23]. 

3. NLRP3 inflammasome 

The inflammasome is a multiprotein complex of the innate immune system that is activated in 

response to cellular stress, reactive oxygen species (ROS), ATP, cholesterol crystals, or 

disturbances in ion balance. The NLRP3 inflammasome consists of the sensor protein NLRP3, 

the adaptor ASC, and the effector caspase-1 [7]. 

In the context of acute pancreatitis, acinar cell injury and mitochondrial dysfunction initiate the 

activation of the NLRP3 inflammasome. 

This leads to the activation of caspase-1, which cleaves pro-IL-1β and pro-IL-18 into their active 

forms. 

IL-1β promotes enhanced infiltration of macrophages and neutrophils, while IL-18 amplifies the 

Th1 immune response and contributes to tissue damage. Activation of the inflammasome in 

severe pancreatitis correlates with extensive necrosis and the development of a systemic 

inflammatory response. Inhibition of NLRP3 or caspase-1 is considered a promising therapeutic 

approach [24,39]. 

All of the signaling pathways described above do not operate in isolation but represent 

interconnected components of a unified inflammatory network. Their cross-activation amplifies 

the intensity of the inflammatory response and contributes to the progression of acute 

pancreatitis [45,12]: 

The NF-κB signaling pathway not only initiates the transcription of key pro-inflammatory 

mediators but also induces the expression of NLRP3 inflammasome components and pro-IL-1β, 

thereby establishing a molecular platform for the subsequent activation of caspase-1 and the 

release of active IL-1β [33,38,50]. 

The MAPK cascades (particularly p38 and JNK) and the JAK/STAT pathway (notably STAT3) 

can enhance the transcriptional activity of NF-κB, as well as directly regulate the production of 

pro-inflammatory cytokines such as IL-6 and TNF-α, thereby synergistically sustaining the 

systemic inflammatory response [21,40,46]. 

Damage to pancreatic acinar cells is accompanied by the accumulation of reactive oxygen 

species (ROS), driven by mitochondrial stress and lipid peroxidation. These molecules play a 

critical role in ROS-dependent activation of the NLRP3 inflammasome, leading to the cascade 

activation of the inflammatory response [8,29]. 

Thus, in the setting of acute pancreatitis, a self-sustaining inflammatory cascade is formed, in 

which molecular signaling pathways mutually amplify one another. This leads to massive local 

inflammation, acinar tissue destruction, the development of necrosis, and the progression of a 

systemic inflammatory response with a high risk of multiple organ failure.  

Thus, an inflammatory cascade is formed in which various pathways reinforce each other, 

leading to massive inflammation, tissue necrosis, and systemic pathology. 

Synergism and Cross-Regulation of Inflammatory Signaling Pathways in Acute 

Pancreatitis 

One of the key aspects of the pathogenesis of acute pancreatitis (AP) is the interaction between 

multiple inflammatory signaling pathways, such as TLR4/NF-κB, NLRP3 inflammasome, 
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JAK/STAT, and MAPK. These pathways do not function in isolation but form a complex 

network, where their activation can be interdependent, mutually enhancing, or, in some contexts, 

regulatory and limiting. [47]. 

1. Interaction between TLR4 and the NLRP3 inflammasome 

Activation of TLR4 typically occurs in response to DAMPs (damage-associated molecular 

patterns) released from injured acinar cells [51]. Activation of the TLR4 receptor initiates the 

MyD88-dependent pathway, leading to the transcription of the pro-IL-1β gene and NLRP3 

inflammasome components through NF-κB activation [20]. However, full activation of the 

inflammasome requires an additional “second signal,” such as ROS, potassium efflux, or 

mitochondrial damage [41]. This indicates a two-step model of NLRP3 activation, in which the 

TLR4/NF-κB pathway provides the priming signal—preparing the cells for subsequent NLRP3 

inflammasome activation [28]. 

2. Synergy Between NF-κB and JAK/STAT 

Cytokines induced via the NF-κB pathway (such as IL-6) subsequently activate the JAK/STAT 

signaling pathway in both autocrine and paracrine manners. Specifically, IL-6 binds to its 

receptor IL-6R, which triggers the phosphorylation of JAK1/2 and STAT3 [Heink S, Yogev N, 

Garbers C, Herwerth M, Aly L, Gasperi C, Husterer V, Scholz CJ, Niess JH, Reindl M, Krug A, 

Waisman A, Müller W, Rose-John S, Becher B. Trans-presentation of IL-6 by dendritic cells is 

required for the priming of pathogenic TH17 cells. Nat Immunol. 2017;18(1):74–85STAT3 then 

translocates to the nucleus and enhances the expression of genes involved in inflammation and 

cell survival. In this way, NF-κB and JAK/STAT form a positive feedback loop, amplifying the 

production of pro-inflammatory mediators [36]. 

3. MAPK and Its Cross-Activation 

The MAPK pathway (particularly p38 and JNK) can also be activated through TLR4 and is 

involved in enhancing the transcription of pro-inflammatory genes [Jiménez-Castro MB, 

Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated 

Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J 

Mol Sci. 2019 Apr 10;20(7):1785]. Interestingly, p38 MAPK is capable of stabilizing the mRNA 

of cytokines induced by NF-κB, such as TNF-α, thereby prolonging their biological activity [1]. 

In certain models of pancreatitis, it has been shown that inhibition of p38 MAPK leads to a 

reduction in TNF-α expression even in the presence of active NF-κB [13,10]. 

4. Joint Involvement in the Initiation and Amplification of Inflammation 

These pathways synergize at multiple levels [3,54,31,32]: 

➢ At the transcriptional level: NF-κB and AP-1 (a downstream product of the MAPK pathway) 

can cooperatively activate the promoters of the same target genes. 

➢ At the secretion level: IL-1β, activated via the NLRP3 inflammasome, can enhance TLR4 

expression and increase cellular sensitivity to DAMPs. 

➢ At the level of cellular polarization: Combined activation of these pathways promotes a 

predominance of the M1 macrophage phenotype, sustaining the inflammatory response. 

5. Mechanisms of Self-Sustaining Inflammation 

These signaling axes also form mechanisms of self-sustaining inflammation: the production of 

IL-6 and IL-1β enhances the expression of TLR4 and STAT3, which in turn amplify the 

inflammatory response. Additionally, ROS generated as a result of inflammation activate both 

the NLRP3 and MAPK pathways, creating a vicious cycle of inflammation [42,49]. 
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Fig.2. Cross-regulation and synergistic interactions between key inflammatory signaling 

pathways (TLR4/NF-κB, NLRP3 inflammasome, MAPK, and JAK/STAT) in the 

pathogenesis of acute pancreatitis. 

Conclusion 

Thus, the TLR4/NF-κB, NLRP3, MAPK, and JAK/STAT signaling pathways are not merely 

activated in parallel during acute pancreatitis (AP), but rather form a tightly interconnected 

network, in which cross-regulation and synergism amplify the inflammatory response. Targeting 

these interactions may represent a key approach to modifying the course of the disease, 

particularly in severe forms of AP. 
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