

Instrumental Features of Vascular Failure in Rheumatological Patients with Disorders of Cerebral Circulation

Tashmukhamedova M. K.

Senior lecturer of Department of faculty and hospital therapy №1 with course of professional pathology of Tashkent Medical Academy of Uzbekistan, Tashkent Medical Academy, Uzbekistan

Abstract: The purpose of study was to study the features of extracranial cerebral hemodynamics in acute ischemic disorders of cerebral circulation - cardioembolic, atherosclerotic and lacunar infarctions in rheumatological patients. We examined 100 patients with ischemic strokes of hemispheric localization, of which 25 (25%) had cardioembolic stroke, 25 (25%) had stroke of atherosclerotic origin, and 50 (50%) had lacunar stroke who treated in in department of rheumatology of Tashkent medical academy. 20 examined people made up the control group. The main neurological manifestations of hemispheric ischemic stroke were characterized by the predominance of focal symptoms: central paresis of the 7th and 12th nerves, the presence of mono-, hemiparesis or hemiplegia, the appearance of pathological reflexes, reflexes of oral automatism, combined with sensory disorders in the form of superficial or total mono and hemianesthesia. In patients with lacunar stroke, signs of diffuse vasospasm of the BCS predominated (85%), with a predominance on the side of the affected hemisphere with an increase in the level of LSC and IMT, as well as the level of peripheral resistance and vascular tone. The results of the studies indicate that strokes of cardioembolic stroke and atherosclerotic origin develop as a result of arterio-arterial thromboembolism, and in lacunar stroke the hemodynamic mechanism of stroke development prevails.

Keywords: extracranial vessels, doppler ultrasound, head hemodynamics, acute ischemic strokes, rheumatological patients.

Despite the etiological diversity of the pathology of the main extracranial vessels in diabetes mellitus, rheumatism, hypertension and atherosclerosis, they often end in the development of such a serious complication as acute cerebrovascular accident. [4-6,9]. It is now obvious that pathological organic lesions of the vascular wall are accompanied by hemodynamic disturbances in the main extracranial vessels of the brain [8]. According to international epidemiological studies, strokes occupy a leading place in the structure of both mortality and disability of the population and are a serious medical and socio-economic problem for society [1-3,7].

The aim of study was investigation of the features of extracranial cerebral hemodynamics in acute ischemic disorders of cerebral circulation - cardioembolic, atherosclerotic and lacunar infarctions in rheumatological patients.

Material and methods: we examined 100 patients with ischemic strokes of hemispheric localization, of which 25 (25%) had cardioembolic stroke, 25 (25%) had stroke of atherosclerotic origin, and 50 (50%) had lacunar stroke. 20 examined people made up the control group. In 25 patients, ischemic stroke was diagnosed in the territory of the right middle cerebral artery, in 60

– in the territory of the left middle cerebral artery. Among the patients with ischemic strokes, there were 46 men and 54 women, whose average age was 56 years. The average age of the control group was 54 years.

The severity of the patients was assessed using two clinical scales: NIHSS (American Institute of Neurological Disorders Stroke Severity Scale) and Scandinavian. The study did not include extremely severe patients, according to the NIHSS (no more than 29 points) and Scandinavian (no less than 11 points) clinical scales. All examined patients underwent Doppler ultrasound of the brachiocephalic vessels (USDG BCV) along the common carotid arteries (CCA), internal carotid arteries (ICA) and external carotid arteries (ECA) arteries using the Phillips affinity 70 apparatus (Germany), Mindray DS-80 (China) with a sensor with a frequency of 5-12 MHz with determination of linear blood flow velocity (LBV) and middle wall (IWM), Purcelot index (RI) and Gosling index (PI). Assessment of patency in the extracranial part of the carotid arteries was carried out using a functional test—carotid compression test [10].

Results of the study: the main neurological manifestations of hemispheric ischemic stroke were characterized by the predominance of focal symptoms: central paresis of the 7th and 12th nerves, the presence of mono-, hemiparesis or hemiplegia, the appearance of pathological reflexes, reflexes of oral automatism, combined with sensory disorders in the form of superficial or total mono and hemianesthesia. Damage to the dominant hemisphere was also accompanied by disturbances in higher cortical functions. The average clinical stroke score was 25.5+1.6 on the NIHSS scale and 32.5+2.4 on the Scandinavian scale, which in both cases corresponds to the average severity of the disease.

Table 1

	Patients with ischemic strokes (n=60)		
	1 group (n=25)	2 group (n=25)	3 group (n=50)
NIHSS scale, points	20,3+1,9	21,2+2,4	18,6+2,1
Scandinavian scale, points	25,1+2,7	27,9+2,5	30,1+2,6

A study of the age and gender structure of morbidity showed that women are more susceptible to cardioembolic stroke, and older men are more susceptible to atherosclerotic stroke. Young men are more affected by lacunar strokes.

Ultrasound examination of the carotid arteries revealed stenotic lesions mainly in the ICA basin, atherosclerotic changes in the curve, signs of vasospasm, and decreased vascular reactivity. Signs of ICA stenosis were: increased blood flow velocity in the bifurcation area; the presence of turbulent blood flow; decrease in blood flow velocity in the common and/or internal carotid artery by 30%. Decrease in the diastolic component of blood flow velocity in the CCA; decrease in blood flow velocity through the external carotid artery with compression of the homolateral and/or superficial temporal artery; no decrease in blood flow velocity in the external carotid artery when performing a brow hemodynamic test; no changes in blood flow velocity in the external carotid artery during compression. (6-8c) homolateral superficial temporal or facial artery in the presence of a reaction of increased blood flow in the contralateral artery during compression of the same arteries on the same side; change in the spectral characteristics of blood flow through the carotid artery.

The ultrasound examination of the carotid brachiocephalic vessels showed a varied ultrasound picture and was unique for each of the examined groups of patients (Table 2).

Table 2. Dopplerographic indicators of the examined

Surveyed group	Arteries	Parameters		
		GS, sm/c	PI	RI
	CCA	65,9+11,5	1,40+0,37	0,68+0,18

Control group (n=20)	ICA	59,3 \pm 14,3	0,96 \pm 0,34	0,59 \pm 0,12
	ECA	76,4 \pm 18,3	1,29 \pm 0,45	0,63 \pm 0,16
Atherosclerotic stroke (n=25)	CCA	61,4 \pm 5,3	2,49 \pm 0,40	1,25 \pm 0,22
	ICA	47,4 \pm 5,8	2,14 \pm 0,30	1,23 \pm 0,22
	ECA	70,8 \pm 4,8	1,58 \pm 0,33	1,05 \pm 0,19
Lacunar stroke (n=50)	CCA	160 \pm 19,5	2,51 \pm 0,41	1,35 \pm 0,28
	ICA	138 \pm 18,7	2,15 \pm 0,32	1,35 \pm 0,28
	ECA	100 \pm 11,8	2,00 \pm 0,36	1,19 \pm 0,16
Cardioembolic stroke (n=25)	CCA	122,5 \pm 10,3	2,20 \pm 0,32	1,18 \pm 0,24
	ICA	108,9 \pm 5,1	2,25 \pm 0,40	1,18 \pm 0,12
	ECA	74,6 \pm 4,2	2,15 \pm 0,53	1,14 \pm 0,17

Note: the reliability of the indicators in relation to the norm was noted *(P < 0.05), ** - (P < 0.01).

Atherosclerotic strokes were accompanied by diffuse bilateral atherosclerotic changes in the Doppler curve of the CCA and ICA with a significant decrease in the level of LSC and IMT, and an increase in the rigidity of the vascular wall. In this group of patients, stenotic changes in most cases affected both the CCA and the ICA. The degree of stenosis reached critical values in 38,7% of patients. In 80% of patients with atherosclerotic stroke, a decrease in vascular reactivity in response to a compression test was detected. A decrease in the linear velocity of blood flow by more than 36% was found in 29 patients out of 50; in most of them this decrease affected both the CCA, ICA, and ECA. In 9,3% of patients, the direction of blood flow along the ECA artery was retrograde, and in 65% of patients, in response to a compression test, antegrade blood flow changed to retrograde. Quite often (53%) in this group, the degree of stenosis of the extracranial carotid joints was to one degree or another greater on the side opposite to the affected hemisphere. In this group of subjects, there was a statically significant increase in the Purcelot index (by more than 40%) and the Gosling index (by more than 70%), which indicates an increase in blood flow resistance and an increase in peripheral resistance and rigidity of the BCS.

In case of cardioembolic stroke, ultrasound doppler examination was characterized by the early development of gross stenotic changes, which were more often localized in the internal carotid artery, prevailed on one side or the other, and were accompanied by moderate bilateral vasospasm. In this group, hemodynamic significant stenoses were most common, often reaching the degree of occlusion of extracranial carotid joints, which is statistically significantly higher than the incidence of occlusive lesions in patients with stroke with arterial hypertension and atherosclerotic origin. Vascular reactivity in this group of patients was reduced in the majority. In 20% of cases, retrograde blood flow was recorded according to the carotid test; it changed in the retrograde direction with a hemodynamically significant decrease in blood flow velocity in the external carotid artery and a moderate increase in the level of vascular tone.

In patients with lacunar stroke, signs of diffuse vasospasm of the BCS predominated (86%), with a predominance on the side of the affected hemisphere with an increase in the level of LSC and IMT, as well as the level of peripheral resistance and vascular tone. Hemodynamically significant signs of stenosis were detected in 6.58% of this group. Vascular reactivity in response to the compression test was preserved in the majority of patients with symptomatic arterial hypertension. A change from antegrade blood flow in the external carotid artery to retrograde in response to a compression test was recorded in 38,7% of cases.

Discussion:

The study revealed distinct hemodynamic patterns in patients with ischemic strokes of different origins. In patients with atherosclerotic strokes, diffuse bilateral stenotic changes in the carotid arteries were observed, leading to increased vascular resistance and reduced reactivity. The development of ischemia was associated with significant changes in blood flow velocity and vascular tone. Cardioembolic strokes, on the other hand, were marked by early and severe stenotic changes, particularly in the internal carotid artery, and were accompanied by moderate bilateral vasospasm. These findings highlight the importance of understanding the underlying hemodynamic mechanisms that contribute to stroke development. In lacunar strokes, signs of diffuse vasospasm predominated, with no significant stenosis, indicating that hemodynamic alterations, rather than thromboembolic events, play a central role in their development. The observed vascular reactivity and blood flow changes emphasize the complexity of cerebrovascular pathology in rheumatological patients. The results underscore the need for tailored therapeutic approaches based on stroke type and underlying vascular abnormalities to optimize patient outcomes and prevent further cerebrovascular complications.

Early diagnosis of these hemodynamic changes using Doppler ultrasound can play a crucial role in reducing stroke severity and guiding targeted treatment strategies for patients with cerebrovascular disorders.

Conclusion: Atherosclerotic lesions, a diffuse decrease in the speed of blood flow along the carotid BCAs is dominant in the presence of their stenotic lesions of a diffuse bilateral nature, with an increase in the rigidity and tone of the examined vessels. Cardioembolic stroke was accompanied by the early development of stenotic changes, with a statically significant prevalence of cases of occlusive lesions with signs of moderate bilateral vasospasm. Early and gross changes in the carotid BCs indicate involvement of the extracranial brachiocephalic great arteries in the inflammatory process. In lacunar stroke, signs of severe vasospasm dominate without signs of hemodynamically significant stenosis of the carotid joints. The results of the studies indicate that strokes of cardioembolic stroke and atherosclerotic origin develop because of arterio-arterial thromboembolism, and in lacunar stroke, the hemodynamic mechanism of stroke development prevails. Timely diagnosis of hemodynamic parameters helps reduce the development of cerebrovascular complications. The results obtained indicate the need to develop differentiated treatment of stroke depending on the genesis of the disease, taking into account the mechanism of stroke development.

References

1. Zenkov L.R. "Functional diagnosis of nervous diseases. Ultrasound diagnosis of vascular diseases of the nervous system. M.: Medicine., 2018. pp. 384-435.
2. Barkhatov D.Yu., Dzhibladze D.N., Barkhatova V.P. Relationship between clinical and biological disorders in atherosclerotic lesions of the carotid arteries / 2020.
3. Skvortsova V.I., Sokolov K.V., Shamalov N.A. "Arterial hypertension and cerebrovascular disorders" Journal of Neurology and Psychiatry 2019.
4. Skvortsova V.I. "Ischemic stroke: pathogenesis, ischemia, therapeutic approaches / Neurological journal, 2020, No. 3, pp. 4-9.
5. Yakhno N.N., Vilensky B.S. Stroke as a medical and social problem / Russian Medical Journal - 2021. – T.13-No.12.-S. 897-815.
6. Vereshchagin N.V., Piradov M.A. Stroke: Assessing the problem. Neurological journal, 2019. No. 5, pp. 4-7.
7. CLINICAL ANALYSIS Stroke in the artery of Percheron <https://orcid.org/0000-0002-9120-2550>
8. Gusev E.I., Skvortsova V.I. Cerebral ischemia. – M.: Medicine, 2020.