

AI-Powered Healthcare Chatbot Using Natural Language Processing for Symptom Analysis and Medical Assistance

S. Manikandan, G. Arun, N. M. Venkatesh, B. Vaidianathan

Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India

Abstract: Chatbots allow consumers to access information and services using a conversational interface. Medical care is vital to everyone. Counseling a physician for every medical issue is difficult. We want to create an AI-powered healthcare chatbot that can identify and deliver basic disease information before seeing a doctor. The NLP algorithm is used. AI-powered NLP analyzes and understands natural human language in our Chatbot. The solution makes bot-user communication easy with text-text support. Based on user symptoms, the Chatbot suggests disease treatments. Chatbot rates the disease as severe or negligible based on symptoms. If the illness is severe, the user is encouraged to see a doctor, and if it is minor, it provides medical aid. Our method uses the patient's symptoms to assist them choose the right antibiotics and precautions. The Python package NLTK (Natural Language Toolkit) does symbolic and statistical Natural Language Processing for English written in programming. It analyzes speech input and generates human-like answers.

Keywords: Medical services; Natural Language Processing; Negligible health problem; Natural Language Toolkit; Clinical data; Artificial intelligence.

Introduction

Healthcare technology has undergone remarkable advancements, revolutionizing how medical services are accessed and delivered. Among these innovations, chatbots have emerged as pivotal tools for addressing the growing demand for convenient, efficient, and reliable healthcare solutions. Chatbots are computer programs that simulate human conversation through text or voice interfaces [23-29]. They provide users with instant access to information and services, bridging gaps in healthcare accessibility, especially in underserved or rural areas. This paper explores the potential of healthcare chatbots in improving patient care, offering real-time assistance, and supporting healthcare professionals. Healthcare chatbots leverage artificial intelligence (AI) and natural language processing (NLP) to interact with users, understand their queries, and provide accurate responses. Unlike traditional methods of seeking medical advice, where consulting a doctor can be time-consuming and challenging, chatbots offer a convenient alternative [30-35]. They can provide preliminary diagnoses, suggest basic treatments, and recommend precautions based on the symptoms described by users. By analyzing user inputs through NLP algorithms, chatbots can classify health issues as either severe or negligible. In cases of severe health problems, the chatbot advises users to consult a doctor for further evaluation and treatment. For minor conditions, it provides medical assistance and guidance, including information about appropriate medications and preventive measures [36-41].

One of the most significant advantages of healthcare chatbots is their ability to provide instant assistance. People often delay seeking medical care due to busy schedules, lack of transportation, or financial constraints. This delay can lead to worsening health conditions, particularly in cases

where early detection and treatment are critical. Chatbots address this issue by offering 24/7 accessibility, enabling users to obtain healthcare advice at any time and from any location. This feature is especially beneficial in emergencies or situations where immediate guidance is required [42-47]. The chatbot system described in this paper is developed using Python and employs the Natural Language Toolkit (NLTK) for processing and analyzing user inputs. NLTK is a powerful module for symbolic and statistical natural language processing, allowing the chatbot to interpret and respond to queries in a human-like manner. The system supports text-based interactions, making it user-friendly and accessible to a wide audience. By combining AI and machine learning, the chatbot personalizes interactions, offering tailored recommendations and reminders based on the user's medical history, preferences, and ongoing health goals [48-53].

In addition to providing basic healthcare advice, the chatbot can assist users in locating nearby doctors, clinics, and hospitals during emergencies. This feature ensures that users can quickly access professional medical care when needed. Furthermore, the chatbot's ability to retrieve and provide accurate health information covers a wide range of topics, including symptoms, conditions, treatments, medications, and preventive care. It also offers educational resources such as articles, videos, and infographics to promote health literacy among users. The scope of healthcare chatbots extends beyond basic consultations [54-60]. They can assist users in scheduling appointments with healthcare providers, tracking health metrics, and managing chronic conditions. For instance, chatbots can help users monitor their blood pressure, blood glucose levels, weight, and exercise habits. By analyzing trends over time, the chatbot provides personalized recommendations for improving health and achieving wellness goals. This functionality not only supports individuals in managing their health but also reduces the burden on healthcare facilities by empowering users to take proactive measures [61-64].

Mental health is another critical area where chatbots can make a significant impact. They can provide support and resources for individuals dealing with stress, anxiety, depression, and other mental health issues. By offering coping strategies, mindfulness exercises, and links to professional help, chatbots serve as an accessible and non-judgmental resource for mental health care. This is particularly important in regions where mental health services are limited or stigmatized [65-69]. The integration of healthcare chatbots into the medical ecosystem also addresses challenges related to medical record management and data accessibility. Traditional systems often involve disparate databases or physical file management, making it difficult for healthcare providers to access up-to-date patient information. Chatbots, equipped with centralized data repositories, allow authorized personnel to securely retrieve and update patient records in real time. This improves collaboration among medical staff, enhances decision-making, and ensures that patients receive timely and accurate care [70-74].

Another critical challenge in healthcare is billing and financial management. Manual invoicing and payment tracking are prone to errors, leading to disputes and delays. By incorporating billing features, chatbots can automate financial transactions, providing transparency and accuracy. Patients receive detailed bills reflecting the services rendered, while the system tracks payments to ensure timely settlements. This functionality streamlines the billing process, reduces administrative workload, and enhances the financial stability of healthcare facilities. Data security and privacy are paramount in the deployment of healthcare chatbots [75-81]. With the increasing reliance on digital records, there is a heightened risk of data breaches and unauthorized access to sensitive information. Chatbots must implement stringent security measures, including encryption, user authentication, and compliance with healthcare regulations such as HIPAA. Ensuring the confidentiality and integrity of patient data fosters trust among users and protects the reputation of healthcare providers [82].

Scalability and adaptability are crucial features of healthcare chatbots, enabling them to cater to diverse populations and evolving healthcare needs. The modular architecture of chatbots allows for the integration of additional features, such as telemedicine capabilities, inventory

management, or advanced analytics. This flexibility ensures that chatbots remain relevant and effective as healthcare systems grow and change. Despite their numerous advantages, healthcare chatbots face certain limitations and challenges [83-89]. For example, they cannot replace professional medical advice or perform complex diagnoses. Chatbots should be designed to complement, rather than replace, healthcare professionals by providing preliminary assistance and directing users to appropriate services when necessary. Additionally, ensuring the accuracy and reliability of chatbot responses requires continuous updates and improvements to the underlying algorithms and databases [90].

The development of healthcare chatbots is particularly relevant in countries like India, where access to quality healthcare services is often limited, especially in rural areas. The inaccessibility of medical facilities and the difficulty in obtaining transportation lead many patients to delay treatment or seek suboptimal care. Healthcare chatbots address this issue by providing immediate assistance, reducing the need for physical visits, and ensuring that patients receive appropriate guidance and support [91-95]. The project described in this paper aims to create an AI-powered chatbot system that prioritizes patient care while reducing costs and improving efficiency. By leveraging machine learning and natural language processing, the chatbot can analyze user inputs, identify potential health issues, and provide tailored recommendations [96-101]. The system's ability to deliver instant assistance and personalized care makes it a valuable tool for enhancing healthcare accessibility and quality. The healthcare chatbots represent a significant advancement in the delivery of medical services. They address critical challenges such as accessibility, efficiency, and data management while empowering users to take control of their health. By providing instant assistance, accurate information, and personalized care, chatbots improve patient outcomes and reduce the burden on healthcare systems [102-106]. As technology continues to evolve, the integration of advanced features and continuous improvements will further enhance the capabilities and impact of healthcare chatbots, making them an indispensable part of modern healthcare.

Literature Review

This survey paper delves into the application of deep learning models in training chatbots that learn from input-output pairs in the training data. Over time, these models improve their ability to generate accurate and context-aware responses [9]. The study highlights how deep learning empowers chatbots to handle complex conversations by extracting patterns from large datasets, enabling them to respond effectively to user queries [5]. By continuously learning from new data, the chatbot refines its predictive capabilities, ensuring better performance and adaptability. This approach ensures a more seamless user experience, where chatbots can handle nuanced queries with increasing accuracy [6]. The integration of deep learning into chatbot design not only enhances their conversational abilities but also expands their application across various domains, including customer service, healthcare, and education [1].

This review examines the ethical implications of using AI-powered chatbots, particularly in sensitive fields like medical or scientific research. Key concerns include privacy, bias, and the responsible use of AI technology [8]. Ensuring data privacy is paramount, as chatbots often handle sensitive user information that requires strict confidentiality [10]. Additionally, addressing algorithmic bias is critical to prevent discriminatory outcomes and ensure fairness in chatbot responses [7]. The paper advocates for responsible AI deployment, emphasizing transparency, ethical compliance, and user trust. Developers must align chatbot functionality with ethical guidelines and regulatory standards, especially when dealing with sensitive topics, to ensure user safety and uphold ethical AI practices [4].

This research explores the complexities involved in building a chatbot for disease prediction. Key tasks include natural language understanding, symptom analysis, and medical diagnosis [11]. The chatbot must comprehend user queries accurately, analyze symptoms effectively, and provide reliable preliminary diagnoses or recommendations. The paper emphasizes the importance of collaborating with healthcare professionals to validate the medical accuracy of

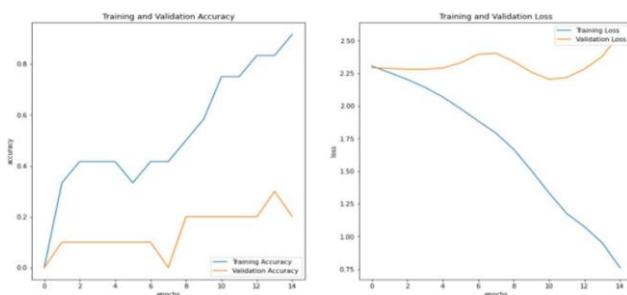
chatbot responses [12]. By incorporating advanced natural language processing (NLP) and machine learning (ML) techniques, the chatbot can deliver context-aware and personalized assistance. This approach ensures the system offers valuable healthcare support while maintaining user trust and safety [12].

This study emphasizes the importance of close collaboration with healthcare professionals and regulatory experts in developing medical chatbots [15]. By aligning with industry standards and medical expertise, developers can create authorized chatbots that prioritize user privacy and safety. The chatbot system must be designed to handle sensitive medical data securely while delivering reliable and medically accurate responses [16]. This collaboration ensures the chatbot supports healthcare needs effectively, empowering users with trustworthy information and resources. Such systems can assist in clinical decision-making, patient education, and general healthcare management, ultimately enhancing user confidence in AI-driven medical applications [14].

This research highlights the potential of integrating chatbot technology with data visualization techniques to create interactive healthcare advisor models. By combining conversational AI with visual data representations, users are empowered to make informed decisions about their health and well-being [17]. Chatbots can analyze symptoms, suggest treatments, and provide insights into health trends, while data visualization enhances the understanding of complex medical information [22]. This synergy between chatbots and visualization tools improves user engagement, making healthcare information more accessible and actionable. The approach bridges the gap between data and decision-making, fostering better health management [13].

This paper explores the use of advanced AI techniques to develop chatbots capable of intelligent, context-aware interactions. By employing machine learning (ML) and natural language processing (NLP), chatbots can provide valuable assistance across diverse domains [19]. The research underscores how these AI-driven systems enhance user experiences by delivering personalized recommendations, accurate responses, and seamless communication [20]. Whether in healthcare, customer service, or education, chatbots equipped with these techniques adapt to user needs dynamically [3]. This adaptability ensures that chatbots not only meet user expectations but also expand their utility, making them indispensable tools in modern applications [18].

This study investigates the creation of healthcare chatbot systems designed to provide personalized assistance and support to users. By integrating NLP and ML techniques, chatbots deliver tailored interactions that empower users to make informed decisions about their health and wellness [21]. These systems offer features such as symptom analysis, appointment scheduling, and preventive care recommendations, creating a comprehensive healthcare experience. The research highlights how healthcare chatbots support clinical decision-making while prioritizing user privacy and data security. This innovation transforms traditional healthcare delivery by making it more accessible, efficient, and user-centric [2].


Methodology

A smart healthcare chatbot system gives users a seamless and interactive experience while seeking medical information, assistance, or services. The system's web-based portals, smartphone apps, and voice-activated platforms allow users to use the Chatbot anytime, anywhere. These interfaces leverage advanced Natural Language Processing (NLP) technology to help the Chatbot understand user questions, discern intents, and extract relevant items like symptoms and prescription names to offer accurate and context-aware responses. EHR connectivity is crucial to the healthcare chatbot system. This connection allows appointment scheduling, prescription reminders, and medical history access in a secure and compliant manner. The system has a large database of medical information, including diseases, treatments, drugs, and procedures. To answer typical questions about the healthcare facility, services, insurance, and more, it offers a FAQs section. The system may use Python, JavaScript, Java,

Rasa, Dialog Flow, or Microsoft Bot Framework. It may store and retrieve data in SQL and NoSQL databases and use AWS, Google Cloud, or Azure for hosting, scalability, and security. To protect data and comply with HIPAA, encryption, OAuth, and two-factor authentication are used. This survey study examines the deep learning model that learns from training data input-output pairs and increases its accuracy over time.

Results and Discussions

A sequence diagram for a healthcare chatbot system illustrates the interaction flow starting with the user inputting a query, which the Chatbot receives and processes using Natural Language Processing (NLP) to identify intent and extract relevant details. Depending on the query, the Chatbot may access a knowledge base or Electronic Health Records (EHR) for relevant information [107-111]. The Chatbot then executes tasks like providing medical advice or scheduling appointments, incorporating personalization based on user-specific data. Feedback is collected post-interaction for continuous improvement, with analytics monitoring performance. Security measures, including authentication and compliance with regulations like HIPAA, ensure data privacy. Additional features like telemedicine integration or emergency assistance may also be incorporated, enhancing the Chatbot's utility and user experience [112-119].

Figure 1. Learning Curve

A Model Evaluating Module plays a pivotal role in the lifecycle of machine learning projects by assessing the performance and efficacy of trained models. This module encompasses a range of functionalities aimed at quantifying the model's performance, identifying potential issues, and facilitating informed decision-making [120-125]. Firstly, it calculates various performance metrics such as accuracy, precision, recall, and F1-score, providing quantitative insights into the model's effectiveness across different evaluation criteria. Secondly, techniques like cross-validation help gauge the model's generalization capability and detect overfitting or underfitting problems. Additionally, the module generates confusion matrices to elucidate the model's classification performance, delineating true positives, true negatives, false positives, and false negatives. Learning curves aid in visualizing the model's performance trends over training epochs, aiding in diagnosing bias-variance trade-offs. Hyperparameter tuning functionalities further refine model parameters to enhance performance [126-129].

Furthermore, it may offer tools for model interpretability, comparative analysis between models, and seamless integration with development pipelines for automated evaluation. Scalability and efficiency considerations ensure the module's efficacy with large datasets, while reporting and visualization capabilities provide stakeholders with comprehensive insights for informed decision-making. Overall, the Model Evaluating Module serves as a critical component in optimizing model performance and guiding the iterative development process of machine learning systems. Additionally, the application of predictive analytics can anticipate potential user needs or health issues based on historical data and behavioural patterns, enabling the Chatbot to offer proactive and timely recommendations or interventions. A/B testing is a crucial methodology for refining and optimizing the Chatbot's features, interfaces, and algorithms. By comparing different versions (A and B) of features or functionalities, such as a symptom checker or appointment scheduling, we can determine which ones resonate most with users and contribute to enhanced user engagement, satisfaction, and health outcomes. Similarly, testing

different user interface designs, layouts, or design elements through A/B testing helps identify which ones provide a more intuitive, user-friendly experience.

Furthermore, comparing the performance of various algorithms or NLP models in terms of accuracy, response time, and relevance through A/B testing enables us to identify the most effective approaches for understanding user queries and generating relevant responses. By focusing on these areas—contextual understanding, behavioural analysis, and A/B testing—we can make significant strides in enhancing the intelligence, personalization, and effectiveness of the healthcare chatbot. This holistic approach ensures that the Chatbot evolves and adapts based on user needs and preferences, offering a relevant, efficient, and beneficial tool in the dynamic landscape of healthcare technology. Incorporating these advanced techniques not only elevates the Chatbot's capabilities but also fosters improved user satisfaction, engagement, and health outcomes.

The architecture diagram for a healthcare chatbot system is structured into several interconnected layers and components. At the forefront is the User Interface layer, comprising web, mobile, and voice interfaces, providing users with diverse interaction options. The subsequent Natural Language Processing (NLP) layer employs advanced algorithms for intent and entity recognition, enabling the Chatbot to understand user queries and context effectively. The Knowledge Base & Data layer serves as the repository for medical information and Electronic Health Records (EHR), ensuring secure and compliant data storage. The Task Execution & Decision-making layer orchestrates various functionalities like appointment scheduling, medication reminders, and decision logic based on user inputs and system data. The integration & Connectivity layer is pivotal for seamless interaction with external systems through APIs, facilitating connections with telemedicine platforms or databases. Security protocols embedded in this layer safeguard data privacy and ensure regulatory compliance. Feedback & Continuous Improvement mechanisms are integrated to collect user feedback and analytics, enabling performance monitoring and iterative refinement of the Chatbot's functionalities.

Conclusion

In conclusion, the healthcare chatbot project represents a significant advancement in the realm of digital healthcare solutions. The Chatbot's user-friendly interface ensures accessibility for individuals of all technological proficiencies, making it a versatile tool for a diverse range of users. By promoting proactive healthcare engagement, the Chatbot encourages users to take charge of their health and well-being, fostering a culture of self-care and preventive medicine. Moreover, the continuous learning and adaptation capabilities of the Chatbot allow it to evolve and improve over time, adapting to new medical research, guidelines, and user feedback. This dynamic nature ensures that the Chatbot remains relevant and up-to-date, providing users with the most current and relevant information. As we look to the future, we envision further enhancements and integrations that will enable the Chatbot to collaborate more closely with healthcare professionals, facilitating seamless communication and information exchange. Ultimately, our goal is to create a comprehensive healthcare ecosystem where the Chatbot serves as a valuable ally to both patients and providers, contributing to improved healthcare accessibility, quality, and outcomes.

References

1. A. Alarood, N. Ababneh, M. Al-Khasawneh, M. Rawashdeh, and M. Al-Omari, "IoTSteg: ensuring privacy and authenticity in internet of things networks using weighted pixels classification based image steganography," *Cluster Computing*, vol. 25, no. 3, pp. 1607-1618, 2022.
2. A. Kumar, S. Singh, K. Srivastava, A. Sharma, and D. K. Sharma, "Performance and stability enhancement of mixed dimensional bilayer inverted perovskite (BA₂PbI₄/MAPbI₃) solar cell using drift-diffusion model," *Sustain. Chem. Pharm.*, vol. 29, no. 10, p. 100807, 2022.

3. A. Kumar, S. Singh, M. K. A. Mohammed, and D. K. Sharma, "Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning," *Int. J. Mod. Phys. B*, vol. 37, no. 07, p.12, 2023.
4. A. L. Karn et al., "B-lstm-Nb based composite sequence Learning model for detecting fraudulent financial activities," *Malays. J. Comput. Sci.*, vol.32, no.s1, pp. 30–49, 2022.
5. A. L. Karn et al., "Designing a Deep Learning-based financial decision support system for fintech to support corporate customer's credit extension," *Malays. J. Comput. Sci.*, vol.36, no.s1, pp. 116–131, 2022.
6. A. M. Alghamdi, M. A. Al-Khasawneh, A. Alarood, and E. Alsolami, "The Role of Machine Learning in Managing and Organizing Healthcare Records," *Engineering, Technology & Applied Science Research*, vol. 14, no. 2, pp. 13695-13701, 2024.
7. A. M. Khasawneh, O. Kaiwartya, J. Lloret, H. Y. Abuaddous, L. Abualigah, M. A. Shinwan, et al., "Green communication for underwater wireless sensor networks: Triangle metric based multi-layered routing protocol," *Sensors*, vol. 20, no. 24, p. 7278, 2020.
8. A. O. Alzahrani, M. A. Al-Khasawneh, A. A. Alarood, and E. Alsolami, "A Forensic Framework for gathering and analyzing Database Systems using Blockchain Technology," *Engineering, Technology & Applied Science Research*, vol. 14, no. 3, pp. 14079-14087, 2024.
9. D. Bhuva and S. Kumar, "Securing space cognitive communication with blockchain," in 2023 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), 2023.
10. D. K. Sharma and R. Tripathi, "4 Intuitionistic fuzzy trigonometric distance and similarity measure and their properties," in *Soft Computing*, De Gruyter, Berlin, Germany, pp. 53–66, 2020.
11. D. K. Sharma, B. Singh, M. Anam, K. O. Villalba-Condori, A. K. Gupta, and G. K. Ali, "Slotting learning rate in deep neural networks to build stronger models," in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021.
12. D. K. Sharma, B. Singh, M. Anam, R. Regin, D. Athikesavan, and M. Kalyan Chakravarthi, "Applications of two separate methods to deal with a small dataset and a high risk of generalization," in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021.
13. D. R. Bhuva and S. Kumar, "A novel continuous authentication method using biometrics for IoT devices," *Internet of Things*, vol. 24, no. 100927, p. 100927, 2023.
14. H. A. Sukhni, M. A. Al-Khasawneh, and F. H. Yusoff, "A systematic analysis for botnet detection using genetic algorithm," in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 63-66.
15. H. Sharma and D. K. Sharma, "A Study of Trend Growth Rate of Confirmed Cases, Death Cases and Recovery Cases of Covid-19 in Union Territories of India," *Turkish Journal of Computer and Mathematics Education*, vol. 13, no. 2, pp. 569–582, 2022.
16. I. Ahmad, S. A. A. Shah, and M. A. Al-Khasawneh, "Performance analysis of intrusion detection systems for smartphone security enhancements," in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 19-25.
17. I. M. Alfadli, F. M. Ghabban, O. Ameerbakhsh, A. N. AbuAli, A. Al-Dhaqm, and M. A. Al-Khasawneh, "Cipm: Common identification process model for database forensics field," in

2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 72-77.

18. I. Nallathambi, R. Ramar, D. A. Pustokhin, I. V. Pustokhina, D. K. Sharma, and S. Sengan, "Prediction of influencing atmospheric conditions for explosion Avoidance in fireworks manufacturing Industry-A network approach," *Environ. Pollut.*, vol. 304, no. 7, p. 119182, 2022.
19. K. Kaliyaperumal, A. Rahim, D. K. Sharma, R. Regin, S. Vashisht, and K. Phasinam, "Rainfall prediction using deep mining strategy for detection," in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021.
20. M. A. Al-Khasawneh, A. Alzahrani, and A. Alarood, "Alzheimer's Disease Diagnosis Using MRI Images," in *Data Analysis for Neurodegenerative Disorders*, Singapore: Springer Nature Singapore, 2023, pp. 195-212.
21. M. A. Al-Khasawneh, A. Alzahrani, and A. Alarood, "An artificial intelligence based effective diagnosis of Parkinson disease using EEG signal," in *Data Analysis for Neurodegenerative Disorders*, Singapore: Springer Nature Singapore, 2023, pp. 239-251.
22. M. A. Al-Khasawneh, M. Faheem, A. A. Alarood, S. Habibullah, and E. Alsolami, "Towards Multi-Modal Approach for Identification and Detection of Cyberbullying in Social Networks," *IEEE Access*, 2024.
23. M. A. Al-Khasawneh, M. Faheem, A. A. Alarood, S. Habibullah, and A. Alzahrani, "A secure blockchain framework for healthcare records management systems," *Healthcare Technology Letters*, IEEE, 2024.
24. M. A. Al-Khasawneh, S. M. Shamsuddin, S. Hasan, and A. A. Bakar, "MapReduce a comprehensive review," in 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), July 2018, pp. 1-6.
25. M. A. Al-Khasawneh, W. Abu-Ulbeh, and A. M. Khasawneh, "Satellite images encryption review," in 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), December 2020, pp. 121-125.
26. M. Awais, A. Bhuva, D. Bhuva, S. Fatima, and T. Sadiq, "Optimized DEC: An effective cough detection framework using optimal weighted Features-aided deep Ensemble classifier for COVID-19," *Biomed. Signal Process. Control*, p. 105026, 2023.
27. M. Mahmoud and M. A. Al-Khasawneh, "Greedy Intersection-Mode Routing Strategy Protocol for Vehicular Networks," *Complexity*, vol. 2020, p. 4870162, 2020.
28. O. Ameerbakhsh, F. M. Ghabban, I. M. Alfadli, A. N. AbuAli, A. Al-Dhaqm, and M. A. Al-Khasawneh, "Digital forensics domain and metamodeling development approaches," in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 67-71.
29. P. P. Dwivedi and D. K. Sharma, "Application of Shannon entropy and CoCoSo methods in selection of the most appropriate engineering sustainability components," *Cleaner Materials*, vol. 5, no. 9, p. 100118, 2022.
30. R. Boina, "Assessing the Increasing Rate of Parkinson's Disease in the US and its Prevention Techniques," *International Journal of Biotechnology Research and Development*, vol. 3, no. 1, pp. 1-18, 2022.
31. S. A. A. Shah, M. A. Al-Khasawneh, and M. I. Uddin, "Review of weapon detection techniques within the scope of street-crimes," in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 26-37.

32. S. A. A. Shah, M. A. Al-Khasawneh, and M. I. Uddin, "Street-crimes Modelled Arms Recognition Technique (SMART): Using VGG," in 2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), June 2021, pp. 38-44.
33. S. Markkandeyan, S. Gupta, G. V. Narayanan, M. J. Reddy, M. A. Al-Khasawneh, M. Ishrat, and A. Kiran, "Deep learning based semantic segmentation approach for automatic detection of brain tumor," *International Journal of Computers Communications & Control*, vol. 18, no. 4, 2023.
34. V. Kumar, S. Kumar, R. AlShboul, G. Aggarwal, O. Kaiwartya, A. M. Khasawneh, et al., "Grouping and sponsoring centric green coverage model for internet of things," *Sensors*, vol. 21, no. 12, p. 3948, 2021.
35. Y. F. Saputra and M. A. Al-Khasawneh, "Big data analytics: Schizophrenia prediction on Apache spark," in *Advances in Cyber Security: Second International Conference, ACeS 2020*, Penang, Malaysia, December 8-9, 2020, Revised Selected Papers 2, Springer Singapore, 2021, pp. 508-522.
36. G. A. Ogunmola, M. E. Lourens, A. Chaudhary, V. Tripathi, F. Effendy, and D. K. Sharma, "A holistic and state of the art of understanding the linkages of smart-city healthcare technologies," in 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2022.
37. P. Sindhuja, A. Kousalya, N. R. R. Paul, B. Pant, P. Kumar, and D. K. Sharma, "A Novel Technique for Ensembled Learning based on Convolution Neural Network," in 2022 International Conference on Edge Computing and Applications (ICECAA), IEEE, Tamil Nadu, India, pp. 1087–1091, 2022.
38. A. R. B. M. Saleh, S. Venkatasubramanian, N. R. R. Paul, F. I. Maulana, F. Effendy, and D. K. Sharma, "Real-time monitoring system in IoT for achieving sustainability in the agricultural field," in 2022 International Conference on Edge Computing and Applications (ICECAA), Tamil Nadu, India, 2022.
39. Srinivasa, D. Baliga, N. Devi, D. Verma, P. P. Selvam, and D. K. Sharma, "Identifying lung nodules on MRR connected feature streams for tumor segmentation," in 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Tamil Nadu, India, 2022.
40. C. Goswami, A. Das, K. I. Ogaili, V. K. Verma, V. Singh, and D. K. Sharma, "Device to device communication in 5G network using device-centric resource allocation algorithm," in 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Tamil Nadu, India, 2022.
41. M. Yuvarasu, A. Balaram, S. Chandramohan, and D. K. Sharma, "A Performance Analysis of an Enhanced Graded Precision Localization Algorithm for Wireless Sensor Networks," *Cybernetics and Systems*, pp. 1–16, 2023, Press.
42. P. P. Dwivedi and D. K. Sharma, "Evaluation and ranking of battery electric vehicles by Shannon's entropy and TOPSIS methods," *Math. Comput. Simul.*, vol. 212, no. 10, pp. 457–474, 2023.
43. P. P. Dwivedi and D. K. Sharma, "Assessment of Appropriate Renewable Energy Resources for India using Entropy and WASPAS Techniques," *Renewable Energy Research and Applications*, vol. 5, no. 1, pp. 51–61, 2024.
44. P. P. Dwivedi and D. K. Sharma, "Selection of combat aircraft by using Shannon entropy and VIKOR method," *Def. Sci. J.*, vol. 73, no. 4, pp. 411–419, 2023.

45. B. Senapati and B. S. Rawal, "Adopting a deep learning split-protocol based predictive maintenance management system for industrial manufacturing operations," in *Lecture Notes in Computer Science*, Singapore: Springer Nature Singapore, pp. 22–39, 2023.
46. B. Senapati and B. S. Rawal, "Quantum communication with RLP quantum resistant cryptography in industrial manufacturing," *Cyber Security and Applications*, vol. 1, no. 12, p. 100019, 2023.
47. B. Senapati et al., "Wrist crack classification using deep learning and X-ray imaging," in *Proceedings of the Second International Conference on Advances in Computing Research (ACR'24)*, Cham: Springer Nature Switzerland, pp. 60–69, 2024.
48. A. B. Naeem et al., "Heart disease detection using feature extraction and artificial neural networks: A sensor-based approach," *IEEE Access*, vol. 12, no. 3, pp. 37349–37362, 2024.
49. P. P. Anand, U. K. Kanike, P. Paramasivan, S. S. Rajest, R. Regin, and S. S. Priscila, "Embracing Industry 5.0: Pioneering Next-Generation Technology for a Flourishing Human Experience and Societal Advancement," *FMDB Transactions on Sustainable Social Sciences Letters*, vol. 1, no. 1, pp. 43–55, 2023.
50. G. Gnanaguru, S. S. Priscila, M. Sakthivanitha, S. Radhakrishnan, S. S. Rajest, and S. Singh, "Thorough analysis of deep learning methods for diagnosis of COVID-19 CT images," in *Advances in Medical Technologies and Clinical Practice*, IGI Global, pp. 46–65, 2024.
51. A. J. Obaid, S. Suman Rajest, S. Silvia Priscila, T. Shynu, and S. A. Ettyem, "Dense convolution neural network for lung cancer classification and staging of the diseases using NSCLC images," in *Proceedings of Data Analytics and Management*, Singapore; Singapore: Springer Nature, pp. 361–372, 2023.
52. S. S. Priscila and A. Jayanthiladevi, "A study on different hybrid deep learning approaches to forecast air pollution concentration of particulate matter," in *2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)*, Coimbatore, India, 2023.
53. S. S. Priscila, S. S. Rajest, R. Regin, and T. Shynu, "Classification of Satellite Photographs Utilizing the K-Nearest Neighbor Algorithm," *Central Asian Journal of Mathematical Theory and Computer Sciences*, vol. 4, no. 6, pp. 53–71, 2023.
54. S. S. Priscila and S. S. Rajest, "An Improvised Virtual Queue Algorithm to Manipulate the Congestion in High-Speed Network," *Central Asian Journal of Medical and Natural Science*, vol. 3, no. 6, pp. 343–360, 2022.
55. S. S. Priscila, S. S. Rajest, S. N. Tadiboina, R. Regin, and S. András, "Analysis of Machine Learning and Deep Learning Methods for Superstore Sales Prediction," *FMDB Transactions on Sustainable Computer Letters*, vol. 1, no. 1, pp. 1–11, 2023.
56. R. Regin, Shynu, S. R. George, M. Bhattacharya, D. Datta, and S. S. Priscila, "Development of predictive model of diabetic using supervised machine learning classification algorithm of ensemble voting," *Int. J. Bioinform. Res. Appl.*, vol. 19, no. 3, 2023.
57. S. Silvia Priscila, S. Rajest, R. Regin, T. Shynu, and R. Steffi, "Classification of Satellite Photographs Utilizing the K-Nearest Neighbor Algorithm," *Central Asian Journal of Mathematical Theory and Computer Sciences*, vol. 4, no. 6, pp. 53–71, 2023.
58. S. S. Rajest, S. Silvia Priscila, R. Regin, T. Shynu, and R. Steffi, "Application of Machine Learning to the Process of Crop Selection Based on Land Dataset," *International Journal on Orange Technologies*, vol. 5, no. 6, pp. 91–112, 2023.
59. T. Shynu, A. J. Singh, B. Rajest, S. S. Regin, and R. Priscila, "Sustainable intelligent outbreak with self-directed learning system and feature extraction approach in technology,"

60. S. S. Priscila, D. Celin Pappa, M. S. Banu, E. S. Soji, A. T. A. Christus, and V. S. Kumar, "Technological frontier on hybrid deep learning paradigm for global air quality intelligence," in *Cross-Industry AI Applications*, IGI Global, pp. 144–162, 2024.
61. S. S. Priscila, E. S. Soji, N. Hossó, P. Paramasivan, and S. Suman Rajest, "Digital Realms and Mental Health: Examining the Influence of Online Learning Systems on Students," *FMDB Transactions on Sustainable Techno Learning*, vol. 1, no. 3, pp. 156–164, 2023.
62. S. R. S. Steffi, R. Rajest, T. Shynu, and S. S. Priscila, "Analysis of an Interview Based on Emotion Detection Using Convolutional Neural Networks," *Central Asian Journal of Theoretical and Applied Science*, vol. 4, no. 6, pp. 78–102, 2023.
63. B. Verma, A. Srivastava, R. Mehta, Meenakshi, and J. Chandel, "FDI-linked Spillovers and the Indian Economic Growth: The Role of Country's Absorptive Capacity," *2022 IEEE Delhi Section Conference (DELCON)*, New Delhi, India, 2022, pp. 1-6.
64. B. Verma and A. Srivastava, "Dimensions of Globalisation and Economic Growth of India: Exploring Causal Linkages," *International Journal of Economic Policy in Emerging Economies*, vol. 15, no. 2-4, pp. 197-213, 2022.
65. B. Verma and D. A. Srivastava, "A Comparative Analysis of Effect of Different Measures of Globalization on Economic Development," *International Journal of Development and Conflict*, vol. 10, pp. 246-264, 2020.
66. S. D. Beedkar, C. N. Khobragade, S. S. Chobe, B. S. Dawane, and O. S. Yemul, "Novel thiazolo-pyrazolyl derivatives as xanthine oxidase inhibitors and free radical scavengers," *International Journal of Biological Macromolecules*, vol. 50, no. 4, pp. 947-956, 2012.
67. S. S. Chobe, V. A. Adole, K. P. Deshmukh, T. B. Pawar, and B. S. Jagdale, "Poly (ethylene glycol)(PEG-400): A green approach towards synthesis of novel pyrazolo [3, 4-d] pyrimidin-6-amines derivatives and their antimicrobial screening," *Archives of Applied Science Research*, vol. 6, no. 2, pp. 61-66, 2014.
68. S. S. Chobe, B. S. Dawane, K. M. Tumbi, P. P. Nandekar, and A. T. Sangamwar, "An ecofriendly synthesis and DNA binding interaction study of some pyrazolo [1, 5-a] pyrimidines derivatives," *Bioorganic & Medicinal Chemistry Letters*, vol. 22, no. 24, pp. 7566-7572, 2012.
69. S. S. Chobe, R. D. Kamble, S. D. Patil, A. P. Acharya, S. V. Hese, O. S. Yemul, and B. S. Dawane, "Green approach towards synthesis of substituted pyrazole-1, 4-dihydro, 9-oxa, 1, 2, 6, 8-tetrazacyclopentano [b] naphthalene-5-one derivatives as antimycobacterial agents," *Medicinal Chemistry Research*, vol. 22, pp. 5197-5203, 2013.
70. B. S. Dawane, S. G. Konda, N. T. Khandare, S. S. Chobe, B. M. Shaikh, R. G. Bodade, and V. D. Joshi, "Synthesis and antimicrobial evaluation of 2-(2-butyl-4-chloro-1H-imidazol-5-yl-methylene)-substituted-benzofuran-3-ones," *Organic Communications*, vol. 3, no. 2, pp. 22, 2010.
71. B. S. Dawane, S. G. Konda, B. M. Shaikh, S. S. Chobe, N. T. Khandare, V. T. Kamble, and R. B. Bhosale, "Synthesis and in vitro antimicrobial activity of some new 1-thiazolyl-2-pyrazoline derivatives," *Synthesis*, vol. 1, no. 009, 2010.
72. B. S. Dawane, B. M. Shaikh, N. T. Khandare, V. T. Kamble, S. S. Chobe, and S. G. Konda, "Eco-friendly polyethylene glycol-400: a rapid and efficient recyclable reaction medium for the synthesis of thiazole derivatives," *Green Chemistry Letters and Reviews*, vol. 3, no. 3, pp. 205-208, 2010.

73. M. Haroun, S. S. Chobe, R. R. Alavala, S. M. Mathure, R. N. Jamullamudi, C. K. Nerkar, and M. K. Anwer, "1, 5-benzothiazepine derivatives: green synthesis, in silico and in vitro evaluation as anticancer agents," *Molecules*, vol. 27, no. 12, pp. 3757, 2022.
74. S. A. Shaikh, S. R. Labhade, R. R. Kale, P. Y. Pachorkar, R. J. Meshram, K. S. Jain, and D. R. Boraste, "Thiadiazole-Thiazole Derivatives as Potent Anti-Tubercular Agents: Synthesis, Biological Evaluation, and In Silico Docking Studies," *European Journal of Medicinal Chemistry Reports*, vol. 100183, 2024.
75. S. A. Shaikh, S. R. Labhade, R. R. Kale, P. Y. Pachorkar, R. J. Meshram, K. S. Jain, and S. N. Wakchaure, "Synthesis, Biological and Molecular Docking Studies of Thiazole-Thiadiazole derivatives as potential Anti-Tuberculosis Agents," *Chemistry & Biodiversity*, vol. 21, no. 6, e202400496, 2024.
76. Agussalim, Rusli, A. Rasjid, M. Nur, T. Erawan, Iwan, and Zaenab, "Caffeine in student learning activities," *J. Drug Alcohol Res.*, vol. 12, no. 9, Ashdin Publishing, 2023.
77. V. P. K. Kaluvakuri, "Revolutionizing Fleet Accident Response with AI: Minimizing Downtime, Enhancing Compliance, and Transforming Safety," *SSRN Electronic Journal*, Feb. 2023.
78. V. P. K. Kaluvakuri, "AI-Powered continuous deployment: achieving zero downtime and faster releases," *SSRN Electronic Journal*, Sep. 2023.
79. V. P. K. Kaluvakuri, "AI-Driven fleet financing: transparent, flexible, and upfront pricing for smarter decisions," *SSRN Electronic Journal*, Dec. 2022.
80. S. Temara, "Maximizing Penetration Testing Success with Effective Reconnaissance Techniques Using ChatGPT", *Asian Journal of Research in Computer Science*, vol. 17, no. 5, pp. 19–29, 2024.
81. S. Temara, "The Ransomware Epidemic: Recent Cybersecurity Incidents Demystified", *Asian Journal of Advanced Research and Reports*, vol. 18, no. 3, pp. 1–16, Feb. 2024.
82. S. Temara, "Harnessing the power of artificial intelligence to enhance next-generation cybersecurity," *World Journal of Advanced Research and Reviews*, vol. 23, no. 2, pp. 797–811, 2024.
83. D. Dayana, T. S. Shanthi, G. Wali, P. V. Pramila, T. Sumitha, and M. Sudhakar, "Enhancing usability and control in artificial intelligence of things environments (AIoT) through semantic web control models," in *Semantic Web Technologies and Applications in Artificial Intelligence of Things*, F. Ortiz-Rodriguez, A. Leyva-Mederos, S. Tiwari, A. Hernandez-Quintana, and J. Martinez-Rodriguez, Eds., IGI Global, USA, 2024, pp. 186–206.
84. J. Tanwar, H. Sabrol, G. Wali, C. Bulla, R. K. Meenakshi, P. S. Tabeck, and B. Surjeet, "Integrating blockchain and deep learning for enhanced supply chain management in healthcare: A novel approach for Alzheimer's and Parkinson's disease prevention and control," *International Journal of Intelligent Systems and Applications in Engineering*, vol. 12, no. 22s, pp. 524–539, 2024.
85. R. K. Meenakshi, R. S., G. Wali, C. Bulla, J. Tanwar, M. Rao, and B. Surjeet, "AI integrated approach for enhancing linguistic natural language processing (NLP) models for multilingual sentiment analysis," *Philological Investigations*, vol. 23, no. 1, pp. 233–247, 2024.
86. G. Wali and C. Bulla, "Suspicious activity detection model in bank transactions using deep learning with fog computing infrastructure," in *Advances in Computer Science Research*, 2024, pp. 292–302.

87. G. Wali, P. Sivathapandi, C. Bulla, and P. B. M. Ramakrishna, "Fog computing: Basics, key technologies, open issues, and future research directions," *African Journal of Biomedical Research*, vol. 27, no. 9, pp. 748–770, 2024.
88. Wali, G., and C. Bulla, "Anomaly Detection in Fog Computing: State-of-the-Art Techniques, applications, Challenges, and Future Directions," *Library Progress International*, vol. 44, no. 3, pp. 13967–13993, 2024.
89. Wali, G., and C. Bulla, "A Data Driven Risk Assessment in Fractional Investment in Commercial Real Estate using Deep Learning Model and Fog Computing Infrastructure," *Library Progress International*, vol. 44, no. 3, pp. 4128–4141, 2024.
90. S. Khan and S. Alqahtani, "Hybrid machine learning models to detect signs of depression," *Multimed. Tools Appl.*, vol. 83, no. 13, pp. 38819–38837, 2023.
91. S. Khan, "Artificial intelligence virtual assistants (chatbots) are innovative investigators," *Int. J. Comput. Sci. Netw. Secur.*, vol. 20, no. 2, pp. 93-98, 2020.
92. S. Khan, "Modern internet of things as a challenge for higher education," *Int. J. Comput. Sci. Netw. Secur.*, vol. 18, no. 12, pp. 34-41, 2018.
93. K. Sattar, T. Ahmad, H. M. Abdulghani, S. Khan, J. John, and S. A. Meo, "Social networking in medical schools: Medical student's viewpoint," *Biomed Res.*, vol. 27, no. 4, pp. 1378-84, 2016.
94. S. Khan, "Study factors for student performance applying data mining regression model approach," *Int. J. Comput. Sci. Netw. Secur.*, vol. 21, no. 2, pp. 188-192, 2021.
95. S. Khan and A. Alfaifi, "Modeling of coronavirus behavior to predict its spread," *Int. J. Adv. Comput. Sci. Appl.*, vol. 11, no. 5, pp. 394-399, 2020.
96. A. K. Singh, I. R. Khan, S. Khan, K. Pant, S. Debnath, and S. Miah, "Multichannel CNN model for biomedical entity reorganization," *Biomed Res. Int.*, vol. 2022, Art. ID 5765629, 2022.
97. M. S. Rao, S. Modi, R. Singh, K. L. Prasanna, S. Khan, and C. Ushapriya, "Integration of cloud computing, IoT, and big data for the development of a novel smart agriculture model," presented at the 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2023.
98. S. Khan et al., "Transformer architecture-based transfer learning for politeness prediction in conversation," *Sustainability*, vol. 15, no. 14, p. 10828, 2023.
99. M. J. Antony, B. P. Sankaralingam, S. Khan, A. Almjally, N. A. Almjally, and R. K. Mahendran, "Brain-computer interface: The HOL-SSA decomposition and two-phase classification on the HGD EEG data," *Diagnostics*, vol. 13, no. 17, p. 2852, 2023.
100. B. Senapati and B. S. Rawal, "Adopting a deep learning split-protocol based predictive maintenance management system for industrial manufacturing operations," in *Big Data Intelligence and Computing. DataCom 2022*, C. Hsu, M. Xu, H. Cao, H. Baghban, and A. B. M. Shawkat Ali, Eds., *Lecture Notes in Computer Science*, vol. 13864. Singapore: Springer, 2023, pp. 25–38.
101. B. Senapati and B. S. Rawal, "Quantum communication with RLP quantum resistant cryptography in industrial manufacturing," *Cyber Security and Applications*, vol. 1, 2023, Art. no. 100019.
102. B. Senapati et al., "Wrist crack classification using deep learning and X-ray imaging," in *Proceedings of the Second International Conference on Advances in Computing Research (ACR'24)*, K. Daimi and A. Al Sadoon, Eds., *Lecture Notes in Networks and Systems*, vol. 956. Cham: Springer, 2024, pp. 72–85.

103. R. Rai, A. Shrestha, S. Rai, S. Chaudhary, D. K. Acharya, and S. Subedi, “Conversion of farming systems into organic biointensive farming systems and the transition to sustainability in agro-ecology: Pathways towards sustainable agriculture and food systems,” *J. Multidiscip. Sci.*, vol. 6, no. 1, pp. 26–31, Jun. 2024.

104. S. Rai and R. Rai, “Advancements and practices in budding techniques for kiwifruit propagation,” *J. Multidiscip. Sci.*, vol. 6, no. 1, pp. 26–31, Jun. 2024.

105. S. Rai and R. Rai, “Monkey menace in Nepal: An analysis and proposed solutions,” *J. Multidiscip. Sci.*, vol. 6, no. 1, pp. 26–31, Jun. 2024.

106. K. Shrestha, S. Chaudhary, S. Subedi, S. Rai, D. K. Acharya, and R. Rai, “Farming systems research in Nepal: Concepts, design, and methodology for enhancing agricultural productivity and sustainability,” *J. Multidiscip. Sci.*, vol. 6, no. 1, pp. 17–25, May 2024.

107. S. Rai and R. Rai, “Advancement of kiwifruit cultivation in Nepal: Top working techniques,” *J. Multidiscip. Sci.*, vol. 6, no. 1, pp. 11–16, Feb. 2024.

108. S. Chaudhary, A. K. Shrestha, S. Rai, D. K. Acharya, S. Subedi, and R. Rai, “Agroecology integrates science, practice, movement, and future food systems,” *J. Multidiscip. Sci.*, vol. 5, no. 2, pp. 39–60, Dec. 2023.

109. R. Rai, V. Y. Nguyen, and J. H. Kim, “Variability analysis and evaluation for major cut flower traits of F1 hybrids in *Lilium brownii* var. *colchesteri*,” *J. Multidiscip. Sci.*, vol. 4, no. 2, pp. 35–41, Dec. 2022.

110. V. Y. Nguyen, R. Rai, J.-H. Kim, J. Kim, and J.-K. Na, “Ecogeographical variations of the vegetative and floral traits of *Lilium amabile* Palibian,” *J. Plant Biotechnol.*, vol. 48, no. 4, pp. 236–245, Dec. 2021.

111. R. Rai and J. H. Kim, “Performance evaluation and variability analysis for major growth and flowering traits of *Lilium longiflorum* Thunb. genotypes,” *J. Exp. Biol. Agric. Sci.*, vol. 9, no. 4, pp. 439–444, Aug. 2021.

112. R. Rai, V. Y. Nguyen, and J. H. Kim, “Estimation of variability analysis parameters for major growth and flowering traits of *Lilium leichtlinii* var. *maximowiczii* germplasm,” *J. Exp. Biol. Agric. Sci.*, vol. 9, no. 4, pp. 457–463, Aug. 2021.

113. R. Rai and J. H. Kim, “Effect of storage temperature and cultivars on seed germination of *Lilium* × *formolongi* HORT.,” *J. Exp. Biol. Agric. Sci.*, vol. 8, no. 5, pp. 621–627, Oct. 2020.

114. R. Rai and J. H. Kim, “Estimation of combining ability and gene action for growth and flowering traits in *Lilium longiflorum*,” *Int. J. Adv. Sci. Technol.*, vol. 29, no. 8S, pp. 1356–1363, 2020.

115. R. Rai, A. Badarch, and J.-H. Kim, “Identification of superior three way-cross F1s, its line × tester hybrids and donors for major quantitative traits in *Lilium* × *formolongi*,” *J. Exp. Biol. Agric. Sci.*, vol. 8, no. 2, pp. 157–165, Apr. 2020.

116. R. Rai, J. Shrestha, and J. H. Kim, “Line × tester analysis in *Lilium* × *formolongi*: Identification of superior parents for growth and flowering traits,” *SAARC J. Agric.*, vol. 17, no. 1, pp. 175–187, Aug. 2019.

117. R. Rai, J. Shrestha, and J. H. Kim, “Combining ability and gene action analysis of quantitative traits in *Lilium* × *formolongi*,” *J. Agric. Life Environ. Sci.*, vol. 30, no. 3, pp. 131–143, Dec. 2018.

118. T. X. Nguyen, S.-I. Lee, R. Rai, N. Kim, and J. H. Kim, “Ribosomal DNA locus variation and REMAP analysis of the diploid and triploid complexes of *Lilium lancifolium*,” *Genome*, vol. 59, no. 8, pp. 551–564, Aug. 2016.

119. N. X. Truong, J. Y. Kim, R. Rai, J. H. Kim, N. S. Kim, and A. Wakana, “Karyotype analysis of Korean *Lilium maximowiczii* Regal populations,” *J. Fac. Agric. Kyushu Univ.*, vol. 60, no. 2, pp. 315–322, Sep. 2015.
120. V. P. K. Kaluvakuri, V. P. Peta, and S. K. R. Khambam, “Serverless Java: A performance analysis for Full-Stack AI-Enabled Cloud applications,” *SSRN Electronic Journal*, May. 2021.
121. V. P. K. Kaluvakuri, S. K. R. Khambam, and V. P. Peta, “AI-Powered Predictive Thread Deadlock Resolution: An intelligent system for early detection and prevention of thread deadlocks in cloud applications,” *SSRN Electronic Journal*, Sep. 2021.
122. V. P. K. Kaluvakuri and V. P. Peta, “Beyond The Spreadsheet: A Machine Learning & Cloud Approach to Streamlined Fleet Operations and Personalized Financial Advice,” *SSRN Electronic Journal*, Jul. 2022.
123. V. P. K. Kaluvakuri, V. P. Peta, and S. K. R. Khambam, “Engineering Secure AI/ML systems: Developing secure AI/ML systems with cloud differential privacy strategies,” *SSRN Electronic Journal*, Aug. 2022.
124. V. P. K. Kaluvakuri and V. P. Peta, “The Impact of AI and cloud on fleet management and financial Planning: A comparative analysis,” *SSRN Electronic Journal*, Jan. 2023.
125. V. P. K. Kaluvakuri, V. P. Peta, and S. K. R. Khambam, “Ai-Driven Root Cause Analysis for Java Memory Leaks,” *SSRN Electronic Journal*, Dec. 2023.
126. V. P. K. Kaluvakuri and S. K. R. Khambam, “Securing Telematics Data in Fleet Management: Integrating IAM with ML Models for Data Integrity in Cloud-Based Applications,” *SSRN Electronic Journal*, Jan. 2024.
127. Agussalim, S. N. Fajriah, A. Adam, M. Asikin, T. Podding, and Zaenab, "Stimulant drink of the long driver lorry in Sulawesi Island, Indonesia," *J. Drug Alcohol Res.*, vol. 13, no. 3, Ashdin Publishing, 2024.
128. R. Tsarev et al., “Automatic generation of an algebraic expression for a Boolean function in the basis \wedge , \vee , \neg ,” in *Data Analytics in System Engineering*, Cham: Springer International Publishing, Switzerland, pp. 128–136, 2024.
129. R. Tsarev, B. Senapati, S. H. Alshahrani, A. Mirzagitova, S. Irgasheva, and J. Ascencio, “Evaluating the effectiveness of flipped classrooms using linear regression,” in *Data Analytics in System Engineering*, Cham: Springer International Publishing, Switzerland, pp. 418–427, 2024.