
35 Information Horizons: American Journal of Library and Information Science Innovation www.grnjournal.us

Information Horizons: AMERICAN Journal of Library
And Information Science Innovation

Volume 2, Issue 7, 2024 ISSN (E): 2993-2777

Algorithms and Data Structures Study the Most Popular Algorithms

and Data Structures (Arrays, Lists, Drives, Graphs, Search and Sorting

Algorithms) and Find Practical Solutions to Them

Qahhorova Nargiza Hayit qizi

qahhorovanargiza02@gmail.com

Abstract. Algorithm means the sum of the sequence of calculation or problem solving

processes. Algorithms do not depend on any programming language, they are instructions that lead

to the same result even if the code is written in any language.

But not all instructions are algorithms. To be an algorithm, an instruction has several

characteristics.

Keywords: Algorithm, array, database, index.

Enter.

Algorithm Complexity

Algorithm complexity is a value measured based on the amount of Space and Time. Time is the time

spent by the program during its operation; Space is the amount of space needed for input, variables,

and output. These two factors determine the effectiveness of the algorithm. Good algorithms have a

small amount of Space and Time, which increases the speed and performance of the code written in

that algorithm.

Now the question may arise, why should we care about the efficiency of an algorithm to solve a

simple problem? Or is it necessary to think about performance when using frameworks in the

programming process?

In many cases, large projects have to perform operations on millions of rows of data. Then, the

performance problem of the code, which is not noticeable in small problems, is clearly visible in the

processing of large amounts of data. A performance problem affects the speed of the code, causing it

to take up more memory space during operation.

As the main goal is to get a job at a tech giant corporation, it is necessary to prioritize performance,

analyze the written code, and determine the complexity.

Analysis of algorithms is also called Asymptotic analysis. In this case, the running time of the

algorithm is calculated depending on the size of the entered input.

As an example of asymptotic analysis, we compare Linear Search and Binary Search algorithms to

find a given number X from a sorted array.

Linear search checks the array elements one by one starting from the first element of the array until X

is found. Assuming the length of the array is N, to find X, a minimum of 1 maximum, N comparison

is performed.

In computer science, a data structure is a format for organizing, managing, and storing data that

allows efficient access and modification. More specifically, a data structure is a set of data values,

relationships between them, and functions or operations that can be applied to the data.

http://www/

36 Information Horizons: American Journal of Library and Information Science Innovation www.grnjournal.us

Data structure (data structures) is a standardized form of data storage and management that allows for

efficient reading and changing of data. We can show an array as an example of the simplest data

structure. (Source)

Data structures are divided into primitive and non-primitive types.

 Primitive type includes Integer, Boolean, Text, Character.

 The non-primitive type itself is divided into two:

 Linear: Array, Linked List, Stack, Queues

 Non-linear: Trees, Graphs.

Assuming that you, as a programmer, know about primitive types of data structures, let's get

acquainted with non-primitiv.

Array An array is a collection of data, of the same type or of different types, depending on the

programming language; size can be predefined or undefined. Since the elements of the array are

sequentially located in the memory, its reading is done quickly. Note: We don't care about other

languages since we've covered the examples in Javascript ES6. Array operations const arr =

[4,6,1,8,3,0,3,7,3,14,9] Read element (Get). in O(1) time If we know the index of the array, then we

can read the element immediately. For example, to get the number 6, it is enough to use arr[1]. Add

element (Insert). At time O(n). Add to the beginning of the array - unshift To add to the beginning of

the array, all elements are shifted to one next index and insert the new element at index 0. Add to end

of array - push Goes to the last element of the array and inserts a new element by incrementing the

index by one. Delete element (Remove). At time O(n). Delete from the beginning of the array - shift

Frees the array at index 0 and moves the elements from the next index to the previous index. Delete

from end of array - pop Deletes the last index of the array Change the element (Update). in O(1) time

In this case, since the index is known, it simply replaces the element in the index with the new one.

Traverse. At time O(n). Array elements are considered in the loop. Linked list A linked list is a linear

structure consisting of nodes, each node stores an element and a pointer indicating the address of the

next (and sometimes previous) node.

Linked list structure

The initial Node is called the head. Nodes after Head are linked to the pointer of the previous node.

So, knowing the first node, i.e. head, we find the desired element by moving to the next nodes with

the help of pointers. If we find out the index number in the array and immediately read the element

with arr[index], in order to get to that element in the linked list, it is necessary to go through all the

elements before it.

In a real-life example, the array is a hotel corridor. Knowing the room number, you will immediately

find the room. Linked List is a guest room inside the house. In order to enter the room, one must first

enter the house, go to the porch, to the corridor.

A database is a centralized data repository. Designed for reading, storing, processing and searching

data. Distinguished by its speed

An array is an ordered collection of finite values of the same type. Examples of arrays are vectors and

matrices known from the mathematics course.

Arrays are usually divided into one-dimensional and multi-dimensional types.

http://www/

37 Information Horizons: American Journal of Library and Information Science Innovation www.grnjournal.us

An array is called one-dimensional, if its element can be referred to by one index.

Indexes of array elements in C\C++ programming languages always start from zero (not one). Let us

be given an array named m of char type. And let it consist of 3 elements.

m[0] à -9 ;

m[1] à 15;

m[2] à 3;

So, to refer to an element, the array name and the element index are written in [] brackets.

Here, the value of the first element is -9, and the second element is -15 in index number 1. The index

of the last element will be n-1 (the number of n-array elements). The index in parentheses [] must be

an integer or an expression leading to an integer. For example:

 int n=6, m=4;

L[n-m]=33; // L[2]=33;

Cout<<m[2]; // on screen : 3;

Addressing array elements is slightly different from addressing simple variables.

 The initial value for all elements of the array with the specified size is 0

int k[5] = {0};

For example:

Example 1. Initialize 0 to all elements of the specified size array.

#include

int main()

{

 int k[5]={0}; // assign a value of 0 to all elements of the array.

 for (int i=0; i<5; i++)

 cout<<"k["<<i<<"]="<<k[i]<<endl;

 return 0;

 }

The following will appear on the screen:

Example 2. Fully initialize an array of the specified size.

http://www/

38 Information Horizons: American Journal of Library and Information Science Innovation www.grnjournal.us

#include

int main()

{

 int k[5] = { 2, -9, 112, 3, 8 };

 for (int i=4; i>=0; i--) // print indices in reverse order.

 cout<<"k["<<i<<"]="<<k[i]<<endl;

 return 0; }

The following will appear on the screen:

References:

1. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to

Algorithms, Third Edition, 3rd, The MIT Press, 2009. [[Special: Book Sources/978-

0262033848|ISBN 978-0262033848]].

2. Black, Paul E. "data structure". Dictionary of Algorithms and Data Structures [online]. National

Institute of Standards and Technology, 15 December 2004.

3. "Data structure". Encyclopaedia Britannica. April 17, 2017.

4. Wegner, Peter; Reilly, Edwin D.. Encyclopedia of Computer Science. Chichester, UK: John

Wiley and Sons, 2003-08-29 — pp. 507–512. [[Special: Book Sources/978-0470864128|ISBN

978-0470864128]].

http://www/

