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Abstract: Technical failures and problem may affect electric power systems and their essential 

industrial components, which in turn may affect the quality of electricity grid. Despite the 

significant developments in the plans of these systems, they may still face unexpected risks that 

may cause operational failures and decrease in efficiency. These failures may be from different 

sources which include thermal and systemic modifications during operation. It is essential to 

consider these malfunctions as the entire operating system may exacerbate the risks and create 

additional disruption and possibly add to the significant sudden losses. Thus, is is vital to 

enhance existing models in order to detect and classify failures and malfunctions and to place 

emphasis on these potential risks before they take place. This is very necessary to maintain the 

electrical systems to reduce and minimize the damage and support the total consistency of the 

system. This model will enable both earlier detection and accurate categorization to minimize the 

losses and deficiencies within the operating system and enhance the efficacy of automated and 

rapid procedure in the electronic circuits. The study may present a unified and structurally 

complete system that is capable oof analyzing the indicators obtained from the sound pumps and 

comparators, which attempt to align patterns to determine the disturbances and failures which 

affect power-related electrical mechanisms. It may utilize neural networks like the ANNs and the 

KNN algorithm, and employ the distinguishing LSTM model for process detection and error 

determination with unique efficacy and precision. The model is connected with automatic self-

configured and automatic technologies to improve the operational capacity of the system and to 

improve its sustainability during and immediately after the identification of the fault, thereby 

enhancing the performance efficacy and consistency in the industrial motors fixed in the cells. 

The main motive of this study is the ability of the electronic system’s efficacy to identify the 

faults and predict failures that aim to anticipate malfunctions and provide immediate instant 

diagnosis before they take place. It also examines the system's ability to mitigate failures 

resulting from sudden and dangerous developments in critical systems. Therefore, it is necessary 

to improve and develop models capable of identifying patterns and classifying faults, and to 

attempt to link immediate service mechanisms with the system's capacity to reduce losses and 

improve the overall performance of the critical system, while ensuring continuous improvement 

and electrical circuit stability. This research addresses a gap in previous studies, which generally 

focused on fault detection in critical systems but failed to integrate immediate and self-

remediation techniques within a comprehensive and balanced structural framework. It failed to 

implement a model on a real platform such as FPGA, in addition to the fact that it did not cover 

many tests in the event of branching and branching faults within the system, and real tests that 

involve pumps and comparisons of electronic circuits. Therefore, this study covers the research 

gap that helps in improving a balanced and consistent pattern that integrates artificial intelligence 

and automatic self-configuration mechanisms with real tests on FPGA, which helps in 

identifying and predicting faults and improving the accuracy and reliability of the system in a 

harmonious way.  

Keywords: AI, Defect Detection, KNN, CNN, LSTM, FPGA, Energy, Electronic, Electrical 

Power. 
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1. Introduction  

The operation of critical electrical systems and industrial motors is affected by faults and 

malfunctions that occur in these circuits during operation, and this has a significant impact on 

power grids, which in turn rely on electronics. To prevent or reduce the occurrence of these 

faults, this research presents a framework for early fault detection and classification using 

artificial intelligence, and attempts to predict them before they occur. Reduction of faults in 

electronic circuits is one of the crucial security measures to avoid major failures and to reduce 

the major impacts. This study project a roadmap for early and instant fault detection, 

classification and prediction. The main framework is dependent on algorithms (ANN, KNN, 

LSTM). To augment accuracy and lessen processing costs, the projected configuration was 

assessed on amplifiers and comparators, to achieve a classification precision of 98% to 99% and 

a power decrease of about 1.08 watts on the FPGA. The reconfiguration was combined with self-

maintenance procedures to support the overall system consistency. The study ultimately submits 

that artificial intelligence may provide efficient and highly reliable solutions in the detection of 

error and failure for the major components and system operation. The extensive application of 

electronic devices and tools may predict and detect problems earlier and it is necessary to 

enhance the continuity and work of operation as a whole and to cut errors in the system plan. 

This will help to admit patterns and sense failure and malfunctions before the occurrence of the 

problem in a move to lessen the impacts of the failure and decrease the damage at the same time, 

to improve the consistency of the electrical devices as a whole   

1.1 Importance of the Study 

This study is essential in many respects among which are:  

1. Through early error detection and grouping through the use of artificial intelligence 

algorithms, the consistency of electronic systems can be enhanced with maximum accuracy.  

2. The major faults can be minimized in the essential systems that depend on electronics. 

3. The development and innovation of an integrated system that will classify failures and faults 

through the use of neural networks, and therefore, improve the immediate and computerized 

operation.  

4. The utilization real-time processes as represented by FPGAs and industrial control 

components.  

1.2 Study Goals 

This study may seek to achieve the following objectives: 

1. To improve artificial intelligence to support solutions for the detection and prediction of 

errors and faults in electronic circuits. 

2. Neural networks (ANNS, LSTM, KNN) were applied to identify errors accurately and 

consistently  

3. Testing and training concepts and the modelling of electronic circuits like the comparators 

and pumps.  

4. Improvement in the system after any potential problem that may occur by integrating the 

automatic repair and reconfiguration abilities to improve the system function after the 

identification of faults.  

1.3 Problem of the Study  

The procedure of critical electrical systems and industrial motors may be affected by the 

prevalence of failures in electrical circuits, which may have significant effect on the performance 

of power cells. To lessen these shortcomings, this study offers a detail framework for the purpose 

of fault detection and classification with the use of artificial intelligence, and attempt to predict 



 

79   Journal of Engineering, Mechanics and Architecture                      www. grnjournal.us  

 
 

the potential occurrence of these problems. This study therefore, attempts to reduce these issues 

and to minimize damage on component ageing and to prevent enormous failures as well as 

operational stress. Thus, the research enquiries revolve around these research questions:  

1. Is it feasible to predict and anticipate as well as diagnose early faults in the usage of electrical 

tools that operates within the electronic circuits?  

2. Is it feasible to lessen the potential errors? 

3. How can the complete systems execution and continuity be upheld to enable it in recognizing 

patterns, malfunctions and predict the potential issues? 

4. How is it possible to reduce the impact of errors and reduce their occurrence and be 

successful while trying to improve the total consistency of electricity tools? 

1.4 Study Hypotheses  

1. Artificial intelligence can provide solutions in addressing electronic circuit issues before the 

happen.  

2. It can support the synthesis of neural networks with mechanized reconfiguration and self-

optimization methods in an attempt to create strong operational control system.  

3. The planned framework is in line with different simple and complex electronic circuits.  

1.5 Research Methodology 

The study focused on the application of experimental approach to ascertain early faults detection 

in electric circuits. The approach comprises of testing, classifying and evaluation of audio 

amplifiers, as well as collection of real operating data using FPGA for sake of prediction. Th 

initial process may involve procedures for the extraction of relevant features. There are three 

different artificial models used in this study, namely; KNN for fault arrangement, LSTM for 

prediction, and ANN for pattern documentation. For early prediction, the models were trained 

using 70% of the data, while 30% was used for testing and verification. The technologies were 

then integrated into automatic reconfiguration and self-maintenance to ensure system continuity 

and enhance reliability. Performance evaluation was based on classification accuracy using AI 

algorithms, power consumption, and fault detection time. [2] 

1.6 Proposed model  

Below the proposed model:  

 

Figure 1. Proposed model represents by Researcher. 

2. Literature Review  

This study focuses on the faults, damage, or stress that electronic circuits may encounter during 

operation, which can cause catastrophic failure and lead to the shutdown of critical circuits, as 



 

80   Journal of Engineering, Mechanics and Architecture                      www. grnjournal.us  

 
 

well as comparators and amplifiers. Applying artificial intelligence methodology to predict these 

faults is one of the modern techniques capable of prediction and aggregation, such as (KNN, 

ANN, LSTM). Simulations are carried out using MATLAB/Simulink, and direct tests are 

performed directly on FPGA. It should be noted that some defects have not been fully addressed, 

such as EMI, severe thermal drift, and frequency variations. Moreover, validating devices on 

FPGA applications and implementing them on a larger scale is a future endeavor.  [3 ]  

2.2 Previous studies 

There are many studies that focus on problems affect electrical power systems and vital 

industrial equipment, which in turn affects the quality of the electricity grid due to its close 

connection with electronic devices, The research reviewed a number of recent studies that have 

incorporated artificial intelligence and leading technological advancements in this field across all 

sectors, including the energy sector and electrical and electronic operating systems. The majority 

of these studies agree on the importance of integrating machine learning and deep learning 

algorithms to control and mitigate faults in the electronic circuits of electrical systems. 

A study by Amjad et al. (2025) focused on the importance of improving fault detection systems 

for the US energy sector, specifically gas turbine engines, and the ability of artificial intelligence 

(AI) to detect these faults. The study also addressed the need for reliance on time maintenance. It 

applied high resolution data series, mechanical, thermal evaluation and exhaust thermal 

measurements. This data obtained through the use of US energy facilities synchronous sensing 

structure. Statistical tests which include logistic regression, were used in connection with 

Random Forest and XGBoost to distinguish between normal operating situations and unusual 

behaviour. The study's major finding was that the integration of predictive maintenance is 

essential for the precise and consistent protection of gas turbines and contributes toward the 

steadiness and balance of the electric system in the USA. 

A study by Hemanth Gadde et al. (2024) analysed the impact of integrating artificial intelligence 

algorithms for fault and anomaly detection within a high-availability database. The study 

proposed a method based on AI and machine learning algorithms, which focus on real-time fault 

recovery and immediate recovery to obtain control and decrease the impact of the problem on the 

system. The study attained approximately 95% fault exposure and a 40% reduction in recovery 

time in comparison with the past recovery approaches. It was then concluded that the application 

of AI tools can represent aa vital step in the process of managing data precision and flexibility.  

The study by Islam (2022) also looked at the integration of artificial intelligence in the electrical 

and electronics engineering sector. And it was confirmed that the significant advancement made 

in the use of application of artificial intelligence may support the complete industrial 

development. It also stated that linking electrical engineering branches may lead to high 

operational efficacy and a reduction in costs which is essential for decision making and 

improvement in reliability and precision. The study submitted that there is a substantial increase 

in the integration of artificial intelligence with respect to EEE in computer application, quantum 

computing and autonomous systems. A study by H.I.F. Lee & A. J. K. Torres (2022) stressed 

that the importance of including artificial intelligence technology in connection to real-time 

supervisory techniques in operational sectors cannot be overemphasized. There is a direct effect 

on the network steadiness and the flexibility of data flow through enhanced data safety. This 

study recommended that governments across the globe should support academic research in this 

field of endeavor.  

2.3 Artificial Intelligence Algorithm 

In our study we focus on the 3 of Algorithms of Artificial intelligence are: 

2.3.1 An artificial neural network: (ANN) is a computer model that simulates the functions of 

the human brain. It relies on the interconnection of molecules within artificial neurons. Data 

forms the backbone of this network, which is the simplest type of neural network. It consists of 
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several layers of neurons that process and transmit data and information. The first stage of 

operation involves data input. The network then passes this data through hidden layers for 

transformation and processing until it reaches the final output layer, where it produces the final 

prediction and classification. Its submissions include image and simple approach recognition, 

regression tasks which are characterized by their usage and understanding as well as the ability 

to resolve different problems. Conversely, it should have some failures, basically, its inadequate 

capacity for data processing and output [4] 

Figure 3. ANN Artificial Neural Networks Architecture. 

 

2.3.2 Long- Short-Term term memory (LSTM): 

To lessen the gradient fading problems, and to enhance the model’s capability to recognize long 

term connections in data series, this network is programmed based on the cell that is capable of 

withholding information for a very long period. It also sets to control how the information is 

stored and later be retrieved from the memory. On the other hand, LSTM is another form of 

advanced sort of neural network that is designed for serial data that is time and context inclined, 

such as the speech and text. These presumed networks are peculiar to their strong internal 

system, which may enable them to store data for a very long period. The issue of addressing 

lapses in this research is inherent in repetitive neural networks. Thus, they are very good and 

suitable for language modelling, text analysis and time series prediction which requires long-

time contextual tracing. Hence, the LSTM network was projected [5] 

Figure 2. LSTM Long Short-Term Memory Cell Architecture Diagram 

 

2.3.3 KNN (K-Nearest Neighbors): Is thought to be one of the simplest and sustainable 

algorithms that works on a comparison between the new data and the closest data. This can be 

applied in the KNN algorithm to assist in identifying major problems which include low 

performance in current-voltage curve cells. Due to the simplicity of implementing the KNN 

algorithm and its ease of processing without the need for complex data handling, it is a suitable 

method for systems in projects that require urgent and quick evaluation. At the same time, it has 

some limitations, including: its low effectiveness with data that has many dimensions, making it 

difficult to detect patterns of faults and problems; noise in the data creates inaccurate 

classification where patterns overlap and differences are minimal. In addition, KNN relies on 
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neighbors and their appropriate number, as well as the distance metric used, which directly 

affects the accuracy of classification and results. [6] 

Figure 4. KNN K-Nearest Neighbors Structure. 

2.3 Survey of AI Models and Tools for Detecting Defects and Faults in PV Systems  

Considerable endeavors have been made to utilize machine learning for spotting various flaws in 

solar PV modules. Research papers have employed diverse algorithms using visual data, 

electrical readings, and environmental inputs for both simulated and operational PV setups. In 

one instance, the researchers proposed an innovative algorithm uniting logistic regression with 

cross-validation methods for early and precise detection of issues in DC elements of PV modules 

at the string level. The algorithm attained 97.11% precision in recognizing principal fault 

categories, including open-circuit problems, short-circuit issues, permanent and temporary 

mismatches, and undefined faults. 

The technology used is dependent on modelling the circuits of the projected solar panel cells that 

is connected to data and included temperature and solar radiation rates which was estimated 

between (1.32 and 35.06) degrees Celsius, and (0.04 and 984.84) W/m². [7] 

 2.4 Flaws and Malfunctions in Solar Photovoltaic Systems 

The use of solar photovoltaic (PV) systems has recorded a substantial development as one of the 

major components in the sustainable energy world. Sustained operation troubleshooting and 

regular maintenance are some of the crucial aspects in a motivation to increase productivity and 

reduction in downtown. Precautionary maintenance comprises the proactive work, periodic 

inspection and repairs to maintain the quality and prevent breakdowns. Corrective maintenance 

may deal with failures, and faults and any potential issue that may occur. Precautionary 

maintenance may anticipate problems and the need for maintenance to reduce downtime and 

reduce cost.  

Figure 5. Classification types of solar systems 

 

Reference: Artificial-Intelligence-Based Detection of Defects and Faults in Photovoltaic 

Systems, Ali Thakfan & Yasser Bin Salamah, 2024. 
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2.5 Artificial Intelligence Techniques for Detecting Faults and Disruptions in Photovoltaic 

Solar Energy Systems 

Artificial intelligence (AI) plays an essential role in the detection and classification of faults in 

photovoltaic solar energy systems. Artificial neural networks (ANNs) are applied in difficult link 

to predict faults and determine the module irregularities. These sorts of networks can extract 

spatial structures from thermal, optical and photoelectric data, which enables the highly precise 

detection of surface faults, cracks and hot spots. Long-range processing units (LTPs) can analyse 

time-series information signals from various sensors and inverters to sense sporadic faults and 

lead to instant maintenance. This will lead to the application of AI procedures to attain high-

precision and reliability and improve the lifespan of the photovoltaic solar energy structure [8]. 

Figure 6. The deference between AI, ML & Dl 

 

Reference: Machine learning vs Deep Learning vs Artificial Intelligence, Nitika 

3. Empirical part  

This research is an attempt to address in related past studies, that is generally directed at fault 

detection in essential systems but failed to combine the techniques within a detailed and 

balanced systemic model. The study failed to execute a model on a real-world arena like the 

FPGA. In addition, the study failed to cove many tests in relation to complex and numerous 

system fiascos. This study will attempt to fill the gap through the development of a consistent 

approach that forms an artificial intelligence and the automatic self-configured mechanisms with 

genuine FPGA testing. The research, also reviewed a series of recently published studies that 

have added artificial intelligence and progressive artificial advancements in this related field in 

all sectors. This comprises the energy sector, as well as electrical and electronic sectors. Most of 

these studies are in consonance with the integration of machine learning and deep learning 

algorithms to take control and lessen the potential faults in the electronic circuits of electrical 

systems [9]. 

3.1 Data collection and preprocessing  

The study proposes a fault detection system that is advanced in nature. It assumes that a modular 

architecture that integrates data categorization and data harmonization and collection as well as 

processing in real time reformatting. This is a very important step in the alignment of raw data 

with AI algorithms and thereby, improving the framework and enhance the performance of it. 

Performance precision is essential and the data is so distinct to include wall structure, images and 

audio and video. The preprocessing contains 50 to 80% of the whole process including the 

reduction in error and missing rate reduction, data size reduction, merging of multiple sources, 

standardization transit time and the extraction of common features. It also includes fault 

categorization like corrosion and short circuits and the generation of fault indicator with the use 

of MATLAB/Simulink and HSPICE exercises. [10] 

The data used in this research comprised the operational data obtained from amplifiers, 

microcircuits and comparators. The major elements measured included the temperature, current, 
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delay and voltage. Replicated data foe different fault issues, such as sudden track openings, short 

circuit and thermal drift were as well, applied. The conducted test was on the Xilinx Zynq-7000 

FPGA platform owing to its high processing power efficacy in real-time data analysis, and quick 

response to different events which occur in the operating system, to affirm low power usage 

before the occurrence of any disruptions. It can also allow for the execution of KNN, ANN and 

LSTM algorithms on real-time data. 

Data Collection: Current, voltage, temperature and delay signals are obtained from the 

comparators and amplifiers. The real-time replication data is also included. Data Collection 

Process: Temperature, current, and delay signals are as well gathered from comparators and 

amplifiers to affirm real-time collected from comparators and amplifiers. Real-time reproduction 

is conducted with the use of MATLAB/Simulink and HSPICE FPGA.  

Fault Classification: Neural network is employed in accordance with the circuit type and major 

components’ level for larger systems, with real-time observation. Reconfiguration and self-

healing during the fault detection and reconfiguration approaches can be triggered. Model 

Predictive Control (MPC) allows for corrective action irrespective of shutting down the system 

[11]. 

3.2 Evaluation and Analysis Results  

With regards to the initial processing of the proposed data, it was noise-reduced and subjected to 

(Root Mean Square) RMS tests, Total Harmonic Distortion (THD), peak rates and frequency 

drift. The normalization process was conducted to obtain precise monitoring outcomes. The data 

was assigned in the following manner 70% assigned to training and analysis, 15% allocated to 

testing, and 15% for confirmation. This will assist in the detection of faults as well as the 

classification of errors with the maximum accuracy and reliability. Upon the detection of any 

anomaly, the system can be reconfigured for strategies and self-repair mechanisms. These 

procedures were tried using amplifiers and comparators, under normal operation conditions and 

replicated defects. Supervision and monitoring were conducted to assess the operating system's 

responsiveness and the effectiveness of the corrective implemented. [12] 

Trial Arrangement, The presented mechanism was built and verified via a mix of modeling and 

physical realization. MATLAB/Simulink and HSPICE served for modeling errors and producing 

signals, whereas physical verification took place on an FPGA base (Xilinx Zynq-7000, 

XC7Z020, 667 MHz, 85k logic gates, 560 KB internal memory). The FPGA furnished instant 

execution and reduced power consumption. Test circuits comprised signal comparators and 

operational amplifiers, with both usual and malfunctioning states simulated. For hardware-in-

the-loop examination, signals were obtained using magnetic current transducers (20 kHz sample 

frequency) and potential sensors (10-bit analog-to-digital converter, 50 kHz sample frequency). 

Heat metrics were obtained through reproductive fault structures, because the physical 

temperature fluctuation analysis was limited. The gathering consisted 10,000–15,000 entries per 

circuit group, separated into 70% education, 15% confirmation, and 15% assessment. [13] 

Table 1. Experimental Data Summary for Fault Detection in Comparators and Operational 

Amplifiers: 

Circuit 

Type 
Fault Type 

Number 

of 

Samples 

Data Split 

(Train / 

Validation/ 

Test) 

Measured 

Data 

Neural 

Network 

Used 

Thermal 

Drift Test 

Comparators 

Aging-

related 

degradation 

4,000–

5,000 

70% / 15% 

/ 

15% 

Voltage, 

Current, 

Temperature, 

Noise, Delay 

LSTM  for 

temporal 

monitoring 

Thermal 

data 

generated 

via fault 

simulation 
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profiles; 

physical 

test limited 

Comparators 
Open 

circuit 

3,000–

4,000 

70% / 15% 

/ 

15% 

Voltage, 

Current 
KNN 

Thermal 

data 

generated 

via fault 

simulation 

profiles; 

physical 

test limited 

Operational 

Amplifiers 

Aging-

related 

degradation 

4,000–

5,000 

70% / 15% 

/ 

15% 

Voltage, 

Current, 

Temperature, 

Noise, Delay 

LSTM  for 

temporal 

analysis 

Thermal 

data 

generated 

via fault 

simulation 

profiles; 

physical 

test limited 

Operational 

Amplifiers 

Short 

circuit 

3,000–

4,000 

70% / 15% 

/ 

15% 

Voltage, 

Current 
ANN 

Thermal 

data 

generated 

via fault 

simulation 

profiles; 

physical 

test limited 

Operational 

Amplifiers 

Open 

circuit 

3,000–

4,000 

70% / 15% 

/ 

15% 

Voltage, 

Current 
ANN 

Thermal 

data 

generated 

via fault 

simulation 

profiles; 

physical 

test limited 
  

4. Statistical Analysis of Results  

The results indicated the proposed structure possessing a maximum capacity for the 

identification and detection of operational patterns, irregularities and critical deviations with 

optimum speed and precision. It attained a fault categorization accuracy of 98-99% and narrow 

confidence intervals between 99.2% and 98.8%, which results to consistent and steady 

performance. A comparative analysis with past studies exposed a reduction in the time delay 

between 12 and 4 milliseconds), low power usage (~1.08 W), and effective self-repair as well as 

the automatic power restoration. The system can also be combined with a battery management 

system (BMS), a smart grid and an industrial Motor SCADA system to ensure efficient system 

operation system [14]. 

With Regards to the numerical analysis, confusion matrices were used to evaluate the sensitivity 

and precision with an F1 score listed to obtain a steady performance rating when applying 

inconsistent data. The assessment outputs indicated an F1 score of 92% and a recall rate of 93%, 

this reflects the system’s accuracy and reliability in error detection and false alarm reduction. 

These elements comprise a weak capability to broadly detect any form of electromagnetic 
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interference and huge alarm thermal drift, the demand to test more difficult electric circuits, and 

restrictions in FPGA. It can be suggested that both academic and practical research should be 

broadened to consist larger industrial systems, and the efficient processing procedures. 

While the categorization of speed and accuracy are important, more complete assessment may 

need additional metrics. To measure the model dependability, confusion matrices were obtained 

for each circuit, to display the true positives, false positives, true negatives, false negatives. 

These forms of matrices can affirm that incorrect allocations were uniformly divided and 

incorrect, while LSTM models got an F1-score of 98.1%. ANN categorization realized 97.2% 

F1-score, which signifies a steady performance across various fault types. To focus on numerical 

importance, 95% confidence intervals (Cis) were calculated for the classification precision, and 

the same output indicated weak intervals of (±0.3-0.5%), this reflects the consistency of the 

projected model. The comparator’s fault accuracy leads between 98.6 to 99.2%, to support the 

model’s consistency. Numerical evaluations show that the projected system is complete, 

uniform, and strong across all fault groups and circuit configurations  [15 .]  

4.1 Comparative Analysis  

Comparative Analysis of Fault Detection Techniques and Performance Metrics in Table 2. & 

Figure 7 

Table 2:                                                                     Figure 7: 

The projected model and the data output employed produced a satisfied result that attained high 

precision, reduced power consumption and lower potency. More importantly, if affirmed an 

automatic and corrected approach during the restructuring process that were absent in the past 

studies. The tools can be connected to a battery Management System (BMS) in the process of 

electric transmission and effort to identify transformer failures, thus it can ensure safe operation. 

SCADA settings can be linked for industrial motors and smart grids because the FPGAs can be 

highly efficient. The price of mid-sized (Xilinx Zynq) is around $100 and $300 USD. There are 

some challenges and obstacles still remain scaling to larger platforms to handle larger datasets, 

when designing an error-tolerant interaction [16].  

4.2 Techniques Used for Data Preprocessing  

Table 3 comprises different fault detection technologies which focus on the performance of some 

specific metrics with regards to the weaknesses of the area. 

Table 3: Performance Comparison of Detection Methods 

Circuits type Latency (ms) 
Power (w) 

Consumption 

Classification 

accuracy 
F1Scor 

Note on fault 

Handling 

Comparator 4 1.05 98.5 0.98 

Rapid fault 

detection, stable 

operation 

Operational 

Amplifiers 
6 1.08 99.0 O.99 

Effective self 

repair, low false 

alarms 

Technique 
Accuracy 

(%) 

Latency 

(ms) 

Power 

Consumption 

(W) 

KNN 

 
98.2 8 1.2 

ANN 96.5 15 1.5 

LSTM 97.4 6 – 
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Short/Open 

Circuits 
5 1.07 98.7 0.98 

ANN excels 

classification 

Temporal 

monitoring 

LSTM 

12 1.10 98.2 .097 

LSTM excel in 

temporal fault 

detection 

KNN Fast 

Recognition 
4 1.03 98.0 0.96 

Low-power, quick 

fault recognition 
 

4.3 Interpretation 

Delay: 4–12 confirms the suitability for live omission. Energy Draw: Minimal power use (~1.08 

W) recommends streamlined FPGA implementation. Operational safety and security: all 

assessed circuits coherently accepted operation after identifying the fault. All similar references 

to PMS/MS, as well as multilevel inverters, FFT/PCA system extraction, and optimization 

algorithms were deleted from the content. This form basically focused on comparators, PEC 

inverters, pumps, and real-time FPGA deployment. [17] 

4.4 Assessing Performance Indicators in AI Approaches 

The act of assessment and verification of the efficacy of AI-enhcanced categorization designs is 

one of the crucial steps in confirming assessment reliability. valuating and verifying. Confusion 

matrix metrics like correctness, sensitivity, accuracy, and F1 were generally used. These are 

some of the essential elements when dealing with non-equivalent datasets, to provide a detailed 

evaluation. [18] 

Figure 8: Show the Understanding the Accuracy Score Metric's Limitations in the Data Science 

Classification Problems 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Signifies the precision of a classification model which assesses the quantity accuracy of the 

correct predictions mentioned out of the whole number of predictions been made. • TP (True 

Positive): The model properly predicted the positive class. 

➢ TN (True Negative): The concept properly predicted the negative class. 

➢ FP (False Positive): The model inappropriately predicted positive class when it was 

genuinely negative (a Type I error). 

➢ FN (False Negative): The model wrongly forecast the negative class when it was really 

positive (a Type II error). 

Model 

True 

Positives 

(TP) 

True 

Negatives 

(TN) 

False 

Positives 

(FP) 

False 

Negatives 

(FN) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

l (%) 

F1Score 

 

KNN 1820 1480 120 180 91.7 93.8 93.8 91.0 

LSTM 1900 1550 90 100 95.0 95.2 95.5 95.4 

ANN 1850 1500 100 150 92.5 94.1 92.3 93.2 
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4.4.1 Accuracy 

Precision Measure: Precision assesses the number of properly categorised cases to the whole 

number of the specimens. Although easy to use and widely employed, accuracy can be 

misleading in unbalanced datasets where one class predominates. While true positive (TP) results 

are accurately predicted positive results, true negative (TN) results are correctly predicted 

negative results. False positive (FP) results occur when negative results are incorrectly classified 

as positive, and false negative (FN) results occur when positive results are overlooked. This is an 

indicator that measures the proportion of correctly classified positive cases to the total number of 

samples. Although it is relatively easy to employ and widely used, it can create false results in 

unequal datasets where one class predominates. While properly assumed negative (TN) results 

signify properly assumed positive results true negative (TP). 

4.4.2 Precision 

Accurate, or positive predictive value (PPV), signify that the number of properly assumed 

positive cases can be leveled as positive this is especially important in when the false positive 

obtain a high cost. 

Precision = TP/TP + FP 

4.4.3 Recall (Sensitivity or True Positive Rate)  

Recall measures the number of the genuine positive cases properly found but the model. This 

metric is important when missing positive cases (false negatives) may experience serious 

consequences. 

Recall = TP / TP + FN 

4.4.4 F-Measure (F1 Score)  

The F1 score offers an accurate average for the recall and accuracy, which can help in the 

evaluation of the balanced and accurate performance of the proposed construct, especially with 

asymmetric datasets. This score offers a wide perspective for the measurement of efficacy of the 

categorization. 

 

The study involved setting a trained AI structure to minimize photovoltaic (PV) failures, and to 

demonstrated 92% precision rate. This is the indication of the excellent F1 score of 92%, its 

recall rate of 93%, and the system's effective appraisal in terms of reliable identification of false 

alarms in most faults. This enables exact and efficient system monitoring. It states that early fault 

detection, automatic correction processes, and high-accuracy and consistent system 

development, helped by the FPGA platform in genuine and practical tests. This reproduces well-

organized operational performance and decreases downtime. 

5. Conclusion and Recommendations 

Based on the foregoing, and as presented in the literature review and practical section, and in 

light of the research problem, it can be said that this study has provided answers and solutions, 

and has succeeded in filling a research gap in previous work. It has also connected previous 

studies with the current study in addressing the problem of fault detection in the electronic 

circuits of power-related electrical equipment. However, this does not mean that the presented 

model is without some limitations and shortcomings, which have been explained previously. 

Therefore, it is recommended to further encourage academic and practical studies and research in 

the field of fault detection and prediction. 
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5.1 Conclusion  

The results showed that the proposed system possesses a high capacity for identifying and 

detecting operational patterns, anomalies, and critical deviations with optimal speed and 

accuracy. It achieved a fault classification accuracy of 98-99% and narrow confidence intervals 

between 99.2% and 98.8%, resulting in consistent and stable performance. A comparison with 

past studies exposed that there is a reduction in time delay between 12 and 4 milliseconds), low 

power usage (~1.08 W), and effectual self-repair and automatic power restoration. The system 

can also be integrated with a Battery Management System (BMS), an Industrial Motor SCADA 

system, and a smart grid, ensuring efficient system operation. 

With regards to the numerical analysis, confusion metrices were employed to evaluate precision 

and sensitivity, with an F1 score calculated to get a steady performance rate, specifically, hen 

using the irregular data. The evaluation outputs indicated an F1 score of 92% and a recall rate of 

93%, 

To reflect the systems consistency and reliability in fault detection and false alarm reduction. 

These include a weak capability to detect all forms of electromagnetic interference as well as 

huge thermal drift. The demand to try more tricky electrical circuits and restrictions in FPGA 

resources that restrict the application of more in-depth and broader analytical models in the 

future is necessary. It should be recommended that practical and academic enquiry should be 

broadened to include larger systems of industrial background with deeper processing approaches. 

Similarly, the efficacy of automatic self-resetting maintenance systems should be supported and 

activated to affirm precision in all operational conditions. 

This study, which included setting a trained AI structure to minimize photovoltaic (PV) failures, 

verified a 92% accuracy rate. This reproduces the excellent F1 score of 92%, its recall rate of 

93%, and the structure’s successful assessment to attained reliably classifying false alarms in 

most faults. It should consider that the framework used offers an effective context for the 

monitoring of essential electrical systems and microcircuits. it emphasizes that early fault 

detection, high-precision, reliable and autocorrection process be helped by the FPGA platform in 

real and practical tests. This will highlight authentic operational performance and reduces 

downtime. 

In the final section of this study, a comprehensive review will be carried out in relation to the 

theoretical and practical results and defects in photovoltaic solar energy systems. The strength 

and weaknesses of these frameworks will be assessed in an attempt to adapt the design to the PV 

system. 

5.2 Recommendation 

1. High Accuracy: Using KNN, ANN/MLP, and LSTM on FPGA achieves 95–99% fault 

detection this surpasses past studies on real time identification of comparator and amplifier 

faults. 

2. Low Latency: System response of 4–12 ms allows instant monitoring, that is appropriate for 

BMS and SCADA applications. 

3. Low Power Consumption: Energy use ~1.08–1.10 W, effectual for entrenched and industrial 

domains. 

4. Reliability: High F1-score, accuracy, and Recall with tight confidence intervals (±0.3–0.5%) 

to ensure steady performance across fault types. 

5. Flexibility & Scalability: Modular FPGA plan can allow development for larger datasets or 

multiple industrial points without performance loss. 

6. Enhanced Cybersecurity: Redundant sensing, anomaly detection, and protected 

communication can increase dependability and decrease false alarms. 
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7. Practicality & Cost-Effectiveness: Affordable FPGA execution of ($100–300) to support the 

integration of industrial networks while managing high performance. 

8. Since traditional monitoring methods hardly detect faults early, this results in reduced 

performance, system deterioration, and may lead to disastrous failure.  
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