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Abstract: Methods and algorithms for the synthesis of regulators for nonlinear dynamic systems 

are given, based on various approaches to the formation of a control device. We considered 

synthesis methods based on phase space, Lyapunov function method, vibration control, feedback 

linearization method, velocity gradient method, lag feedback method, adaptive, robust, 

intelligent approaches, fuzzy logic, systems with a variable structure, etc. All the methods of 

synthesis of nonlinear regulators discussed above give a solution to the problem only for rather 

narrow classes of objects. Therefore, the problem of building regulators for nonlinear systems in 

many cases has not yet been solved.  
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The theory of linear systems is the most developed branch of the theory of automatic control due 

to the fact that the use of the superposition principle allows the use of a convenient apparatus of 

transfer functions and state space. Meanwhile, real control objects can detect significant 

nonlinear properties, which must be taken into account when designing control systems thereof. 

To date, a large number of methods have been created for the synthesis of nonlinear automatic 

control systems. Taking into account the influence of nonlinearities in any automatic control 

system faces great difficulties, since you have to deal with the solution of non-linear differential 

equations of higher orders. The choice of a particular method depends on the setting of the study 

problem, the type of nonlinearity and the order of the differential equation describing the system. 

If the control system is described by a differential equation of the first, second or third order, 

then methods based on the study of processes in phase space are used to analyze and synthesize 

nonlinear systems. The study of processes in phase space refers to the exact methods of studying 

nonlinear systems, since it allows you to obtain exactly the necessary and sufficient stability 

conditions. This method is distinguished by clarity and the ability to obtain a complete idea of 

the nature of possible states of the system. The method is based on the concept of phase space. 

Powerful tools for the analysis and synthesis of nonlinear control systems are the Lyapunov 

function method (direct or second Lyapunov method) [1-3] and frequency methods combined by 

the Yakubovich-Kalman lemma [4]. 

The conventional perturbation control principle [5-7] assumes the effect on the nonlinear system 

of a preselected external signal 𝑢(𝑡) as some function of time without taking into account the 

values of the controlled process. This can be either a certain physical impact on the system or a 

change in some parameter of the managed system. The advantage of this control principle is ease 

of implementation, since it does not require measurements and installation of sensors, which is 

important when controlling ultrafast processes, for example, occurring at the molecular or atomic 

level, for which there is no possibility of measuring the state of the system in real time. 
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As noted in work [5], the possibility of a significant change in the dynamics of the system by a 

periodic excitation signal has been known for a long time. Back in the first half of the 20th 

century. The possibility of stabilizing the pendulum in an unstable state using a high-frequency 

signal was shown, which laid the foundation for vibration mechanics. At the same time, the 

effect of high frequency excitation on the behavior of non-linear systems of the general type was 

investigated using the Krylov-Bogolyubov averaging method. In control theory, high-frequency 

impacts are used in the construction of vibration and the so-called "trembling" control (dither 

control), as well as in the recent works of G.A. Leonov during transient stabilization. At the 

same time, the task of stabilizing the system relative to a given state of equilibrium or trajectory 

was set. In recent publications, for systems presented in the form of Lurie, it is proposed to use 

vibrating control with a piecemeal constant input stochastic ("trembling") signal. 

For view systems 

𝑥̇ = 𝑓(𝑥) + 𝐵𝑢, 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅𝑚,     (1) 

where 𝑚 = 𝑛 and det⁡ 𝐵 ≠ 0, work [8,9] proposes the construction of a combined control called 

"openplus- closed-loop" (OPCL). In this case, the law of management is sought as 

𝑢(𝑡) = 𝐵−1(𝑥̇∗(𝑡) − 𝑓(𝑥̇∗(𝑡)) − 𝐾(𝑥̇ − 𝑥̇∗(𝑡))),    (2) 

where 𝐾 - square matrix of gains. 

A number of methods have been developed to construct the control of nonlinear objects with 

incomplete measurement. In particular, the feedback linearization method [5] allows, using the 

methods of linear system theory, to ensure the desired dynamics of a closed system. Consider the 

idea of the method for systems affinity for control 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢, 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅𝑚.    (3) 

The system (3) is linearizable by feedback in the region Ω ∈ 𝑅𝑛 if there is a smooth reversible 

coordinate replacement 𝑧 = Φ(𝑥), 𝑥 ∈ Ω, and a smooth feedback transformation 

𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣, 𝑥 ∈ Ω     (4) 

where 𝑣 ∈ 𝑅𝑚 - new control such that the closed system is linear, i.e. its closed coordinate 

equation is 

𝑧̇ = 𝐴𝑧 + 𝐵𝑣       (5) 

for some constant matrices 𝐴, 𝐵. A significant drawback of this method is that such an approach 

ignores the system's own dynamics. Arbitrary desired dynamics are achieved at the cost of high 

control power required under significant initial conditions and when tracking rapidly changing 

program motion. 

A number of methods for constructing a nonlinear control are based on changing the value of 

some objective function 𝑄(𝑥(𝑡), 𝑡) [5]. For example, the value 𝑄(𝑥(𝑡), 𝑡) may be the distance 

between the state of the system at a given time 𝑥(𝑡) and the current point 𝑥∗(𝑡) on a given path 

𝑄(𝑥(𝑡), 𝑡) = ∥∥𝑥 − 𝑥∗(𝑡)∥∥
2
, where ∥ 𝑥 ∥ is the Euclidean norm of vector 𝑥. 

Also, a distance 𝑄(𝑥) =∥ ℎ(𝑥) ∥2 from the current position of the system 𝑥(𝑡) to a given target 

surface ℎ(𝑡) = 0 can be used as an objective function. For continuous time systems, the value of 

𝑄(𝑥) does not directly depend (at the same time) on the control signal and, therefore, instead of 

𝑄(𝑥), one can consider its derivative 𝑄̇(𝑥) = (∂𝑄/ ∂𝑥)𝐹(𝑥, 𝑢), i.e., reduce the rate of change of 

the objective function over time. 

Based on this, the methods of the velocity gradient (VG method) [10], which assume a change in 

control and in the direction of the anti-gradient along and the speed 𝑄(𝑥) of the original 

objective function. In particular, algorithms in the so-called finite form have the form 

𝑢 = −𝜓(∇𝑢𝑄̇(𝑥, 𝑢))       (6) 
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where 𝜓(𝑧) − is some vector function whose value is directed at an acute angle to its argument 

𝑧. For affine control objects (3), the algorithm (6) takes the form 

𝑢 = −𝜓(𝑔(𝑥)𝑇∇𝑄(𝑥))      (7) 

In this case, Lyapunov 𝑉 functions are used as an objective function, decreasing along the 

trajectories of the closed system. 

A relatively new task is to develop methods of synthesis of nonlinear systems by ensuring the 

passivity of this nonlinear system using feedback or by selecting a special output function 

[5,11,12]. The idea of the approach formed to date is that the task of stabilizing a nonlinear 

controlled system is solved using the following two-stage procedure. At the first stage, the task 

of passigating a nonlinear system is set, which consists in ensuring the passivity of the original 

system. For an affine control system (3), this means the existence of a function 𝑉(𝑥) and a 

feedback (4) such that 

𝑉̇(𝑥) =
∂𝑉

∂𝑥
(𝑓 + 𝑔𝛼 + 𝑔𝛽𝑣) ≤ 𝑦𝑣.⁡(8) 

It can be said that (8) is performed if the yield y is taken as 𝑦 = 𝐿𝑔𝑉𝛽. This is a velocity gradient 

algorithm at 𝑥 ≠ 0 and 𝑉̇|
𝑦=0

< 0. The latter condition means that the so-called zero-dynamics 

of the system, i.e. the motion on the manifold 𝑦 = 0, is asymptotically stable (this property is 

called a minimum phase) [12]. 

At the second stage, when additional conditions of the observability type are met, the task of 

stabilizing the passive system obtained as a result of the first stage is solved. The advantages of 

this method are the division of the initial complex problem into two simpler and more versatile 

first stage, since the passivation of the system can also be an intermediate goal in solving 

problems other than the stabilization problem. Another advantage of the passivation method is 

that it does not require explicit calculation of the Lyapunov function to synthesize the system and 

investigate it. 

As noted in work [5], in recent years, interest in the time-delayed feedback method proposed by 

K. Piragas has increased [13]. He considered the task of stabilizing the unstable 𝜏-periodic orbit 

of a nonlinear system 

𝑥̇(𝑡) = 𝐹(𝑥, 𝑢)       (9) 

using a simple feedback law: 

𝑢(𝑡) = 𝐾(𝑥(𝑡) − 𝑥(𝑡 − 𝜏))      (10) 

where 𝐾 − transmission ratio, 𝜏 - delay time. If 𝜏 is equal to the period of the existing periodic 

solution 𝑥‾(𝑡) of equation (9) at 𝑢 = 0 and the solution 𝑥(𝑡) of the closed system equation (9), 

(10) begins in orbit Γ = {𝑥‾(𝑡)}, then it remains in Γ for all 𝑡 ≥ 0. Decision 𝑥(𝑡) may converge to 

Γ even if 𝑥(0)𝜖‾Γ. A disadvantage of the control law (10) is its sensitivity to parameter selection, 

especially 𝜏. Despite the simple form of the algorithm (10), analytical research by a closed 

system is a complex and not yet fully solved problem. 

Currently, technological progress leads to a reduction in the time taken to create modern 

systems, which creates significant difficulties in creating mathematical models of processes and 

control objects. Therefore, many modern self-propelled guns are created in conditions of a priori 

uncertainty. This means that some of the characteristics of the control object can be previously 

unknown or change during its operation. To solve the problem of controlling dynamic systems in 

conditions of uncertainty, such basic approaches as adaptive (self-organizing) [10,14-16], robust 

[17,18], intelligent (based on neural-like networks) [19, 20], invariant, principles of fuzzy logic 

(fuzzy controllers) [21], principles of systems with a variable structure have been developed. 

However, in the non-linear case, this problem does not currently have a complete solution at the 

level of modern requirements. 
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Adaptive systems are designed to operate in the presence of recoverable uncertainties in the 

system [16], i.e. those that are a priori unknown, but can be estimated or calculated during 

operation from measurement data. Traditional adaptive control techniques assume that the order 

of the system is known and does not change during its operation. Another limitation of the use of 

adaptive systems is the need for the quasi-stationary nature of undefined objects, i.e. the 

slowness of changing their parameters. 

The robust approach is mainly used for systems with parametric perturbations of small 

magnitude. 

The works [6,22,23] examined systems with spontaneously changing structure and order. In 

particular, in [6] some features of systems with hopping state variables are noted. 

In recent years, 𝐻∞-optimal synthesis [24] has been intensively developed, which allows to 

obtain a solution in the case of non-linear systems with uncertainties. The main tool of this 

approach is a set of manifolds introduced in the state space of a system, on which given relations 

between variables are performed in steady mode. However, here it is necessary to solve non-

linear inequalities (such as the Hamilton-Jacobi equation) in partial derivatives, which greatly 

complicates the practical application of this method. 

[25-27] proposes an approach that implements control over the derivatives of the observed 

variable and uses the representation of the system variables by the Taylor finite series. Since the 

Taylor series of a differentiable function is based on its derivatives, one of the advantages of this 

concept is that it leads to such models whose state variables coincide or are directly related to the 

time derivatives of the observed variables [6,28]. Based on the information received from the 

measuring elements, the self-organizing regulator determines both its parameters and its 

structure. 

A widespread approach to the design of nonlinear regulators is based on the representation of the 

regulator as a neural network structure in which nonlinear activation functions are configured. At 

the same time: 

1. An arbitrary nonlinear control law is described by a hypersurface in 𝑛-dimensional space. 

2. The description of the control hypersurface is formed as the sum of the nonlinear control laws 

for each measurement separately. 

3. Adjustment of nonlinear fuzzy regulator is equivalent to optimization of nonlinear activation 

function parameters. 

When optimizing the linear control law, the parameters are represented by a set of constants, 

where the one constant corresponds to one control channel. 

When optimizing the nonlinear control law, a whole set of constants 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑘} will 

correspond to one channel. The objective function can be selected as: 

𝐹(𝑝1, 𝑝2, … , 𝑝𝑘) =∑  

𝑁

𝑖=1

|𝑦𝑖
∗ − 𝑦𝑖|, 

where 𝑦 and 𝑦∗-real and desired value of object output, 𝑖 - moment of time. 

The objective function is (4) multimodal, which requires the use of global optimization 

techniques such as a genetic algorithm [29]. 

The following algorithm can be used to simplify the global optimization problem in some cases 

[30,31]: 

1. A linear PID is synthesized - a regulator (linear neural network), the parameters of which 

𝑘𝑝, 𝑘𝑖 , 𝑘𝑑, will play the role of denormalization coefficients. 
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 2. Non-linear functional dependencies are configured that describe a fuzzy control law 

(activation functions) for each of the input variables. 

This algorithm was used to control the active suspension of the vehicle [32], nonlinear objects 

such as Gammerstein and Wiener [33], nonlinear oscillator [30]. The modeling examples given 

in these papers show that the use of nonlinear regulators can provide a significant reduction in 

transient time and a reduction in overregulation, which is not achievable under a linear control 

law. 

Thus, the proposed approach can be useful in modernizing control systems of a wide class of 

dynamic objects where linear PID regulators are used. 

In control theory, variable-structure regulators are known in which line blocks are switched [34-

36]. These regulators are built on the basis of phase portraits of blocks, so they usually commute 

secondorder line blocks. This causes the narrow possibilities of such regulators, especially for 

the synthesis of control systems for non-linear objects. 

The synthesis method proposed in [34 − 36] is characterized by the fact that nonlinear control 

laws are committed. Therefore, the corresponding regulators are called nonlinear variable 

structure regulators (NVSR). The synthesis of commutable nonlinear control laws is based on the 

Lyapunov function, which significantly expands the control capabilities of nonlinear objects. The 

NVSR algorithm is quite complex, but it is easily implemented on industrial microcontrollers. 

Thus, the method proposed in [33,34] makes it possible to use the wide possibilities of modern 

computer technology. 

This algorithm of operation of the nonlinear variable structure regulator provides effective 

control of nonlinear objects, and can be extended to the case of objects with several controls. 

All the methods of synthesis of nonlinear regulators discussed above give a solution to the 

problem only for rather narrow classes of objects. Therefore, the problem of building regulators 

for nonlinear systems in many cases has not yet been solved. 
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