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Abstract: This paper explores various training algorithms for neural networks applied to the 
modeling and control of nonlinear dynamic systems. Nonlinear systems are characterized by 
complexities that linear models cannot capture, making traditional methods insufficient. Neural 
networks, due to their universal approximation capabilities, have emerged as powerful tools for 
learning complex system behaviors. The study compares several supervised and unsupervised 
training algorithms, including backpropagation, Levenberg–Marquardt, resilient 
backpropagation, and gradient descent with momentum. Simulation experiments demonstrate the 
effectiveness and limitations of each method in dynamic adaptation, convergence speed, and 
generalization ability. The findings support the selection of appropriate algorithms depending on 
the system's structure and real-time demands.  
Keywords: Nonlinear systems, neural networks, training algorithms, dynamic systems, adaptive 
modeling, backpropagation, Levenberg–Marquardt. 
 
 
Introduction. Nonlinear dynamic systems are prevalent in many real-world applications, 
ranging from robotics and aerospace engineering to energy systems and biomedical devices. 
These systems exhibit complex behaviors such as hysteresis, saturation, and time-varying 
parameters, which make their modeling and control particularly challenging. Classical 
identification and control techniques, which rely on linear assumptions, often fail to capture the 
intrinsic nonlinearities of such systems. As a result, there is a growing need for advanced 
modeling approaches that can handle the inherent complexity and uncertainty of nonlinear 
dynamics. 
Artificial neural networks (ANNs) have emerged as a promising solution due to their powerful 
approximation capabilities and ability to learn from data without requiring an explicit 
mathematical model. They can represent a wide range of nonlinear mappings and adapt to 
dynamic environments, making them ideal candidates for modeling, prediction, and control of 
nonlinear systems. However, the success of neural network-based modeling heavily depends on 
the choice of training algorithm. An efficient training algorithm must not only minimize 
prediction error but also ensure stability, generalization, and fast convergence. 
Over the years, numerous training algorithms have been proposed and applied to train neural 
networks, including gradient descent, Levenberg–Marquardt (LM), resilient backpropagation 
(Rprop), and conjugate gradient methods. Each of these algorithms offers specific advantages 
and trade-offs in terms of convergence speed, computational complexity, and robustness to local 
minima. Therefore, selecting the appropriate training algorithm is crucial for achieving optimal 
performance in dynamic and nonlinear environments [1-3]. 
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This paper investigates the performance of various training algorithms in the context of nonlinear 
dynamic system modeling. By analyzing simulation results, we aim to identify the most effective 
algorithms under different system conditions and provide recommendations for their practical 
application in intelligent control systems. 
Methodology. To investigate the efficiency of neural network training algorithms in modeling 
nonlinear dynamic systems, a structured methodology was developed, encompassing data 
generation, neural network architecture selection, algorithm implementation, and performance 
evaluation. 
The first step involved generating synthetic data from benchmark nonlinear dynamic systems 
commonly used in system identification research. These included the Duffing oscillator, Van der 
Pol oscillator, and a nonlinear inverted pendulum system. Each system was simulated over a 
specified time range with varying initial conditions to ensure diverse dynamic behaviors were 
captured. The inputs and outputs from these simulations served as the training and testing 
datasets for the neural networks [4]. 
A feedforward multilayer perceptron (MLP) architecture was chosen for its wide use and 
effectiveness in function approximation tasks. The network comprised an input layer 
(corresponding to system inputs), one or two hidden layers with nonlinear activation functions 
(e.g., hyperbolic tangent or ReLU), and an output layer representing the system response. The 
number of hidden neurons was selected empirically to balance between model complexity and 
generalization [5]. 
Four training algorithms were implemented and tested using MATLAB and Python-based 
environments: standard backpropagation with gradient descent, gradient descent with 
momentum, the Levenberg–Marquardt (LM) algorithm, and resilient backpropagation (Rprop). 
Each algorithm was trained on the same dataset and initialized with the same random weights to 
ensure fair comparison. 
Performance evaluation was conducted using several quantitative metrics, including mean 
squared error (MSE), training time, convergence speed (number of epochs to reach minimal 
error), and generalization error on test data. In addition, sensitivity analysis was performed to 
study the impact of algorithm parameters such as learning rate, momentum constant, and 
damping factor in LM [6]. 
To ensure robustness and reproducibility, each training experiment was repeated multiple times, 
and average results were recorded. Furthermore, statistical tests such as the Wilcoxon signed-
rank test were applied to validate the significance of differences between algorithms. 
This methodological framework enables a comprehensive assessment of training algorithms 
under dynamic and nonlinear conditions, offering insights into their suitability for intelligent 
system modeling. In the following section, we present and analyze the experimental results 
obtained from this procedure. 
Results and Discussion. This section presents the experimental outcomes derived from training 
neural networks using different algorithms and evaluates their effectiveness in modeling 
nonlinear dynamic systems. Each training algorithm was applied to three distinct system models: 
the Duffing oscillator, Van der Pol oscillator, and the nonlinear inverted pendulum. The results 
were analyzed in terms of accuracy, convergence speed, stability, and generalization capability. 
The Levenberg–Marquardt (LM) algorithm consistently outperformed the other methods across 
all systems in terms of achieving the lowest mean squared error. For the Duffing oscillator, the 
LM algorithm reduced the training MSE to 0.0013, whereas gradient descent achieved 0.0049, 
and resilient backpropagation (Rprop) yielded 0.0026. Similar trends were observed in the Van 
der Pol and inverted pendulum models, indicating that LM provides superior learning accuracy 
when the network is moderately sized and the system is smooth and differentiable [7]. 



81			Journal	of	Engineering,	Mechanics	and	Architecture															 	 	 					www.	grnjournal.us		
 

 

Training convergence was measured by the number of epochs required to reach a stable error 
threshold. Gradient descent exhibited the slowest convergence, requiring over 1000 epochs in 
some cases. In contrast, the LM algorithm converged within 150–200 epochs for most systems, 
demonstrating faster adaptation. Rprop also showed significantly improved speed compared to 
basic gradient descent, often converging in less than 300 epochs, making it a computationally 
attractive alternative when LM is infeasible due to memory limitations [8]. 
Although LM achieved the best performance on training data, it exhibited mild signs of 
overfitting on test data, especially when the network architecture was complex. Rprop and 
gradient descent with momentum offered more stable generalization behavior across test 
scenarios, suggesting that regularization or early stopping is essential when using LM in real-
world applications. 
The sensitivity analysis revealed that the standard gradient descent was highly dependent on the 
choice of learning rate. A poor selection often led to divergence or extremely slow convergence. 
On the other hand, Rprop was relatively insensitive to learning rate changes and maintained 
stable learning behavior over a wide range of conditions. The LM algorithm required careful 
tuning of the damping factor (μ) to balance between the Gauss–Newton and gradient descent 
modes [9]. 
The generalization capability was assessed by evaluating MSE on previously unseen test data. 
Rprop demonstrated the highest robustness, maintaining a low generalization error with minimal 
variance across trials. This behavior is attributed to its adaptive weight update strategy, which 
avoids large oscillations during training. Momentum-based gradient descent also showed 
improved generalization compared to vanilla gradient descent, especially in systems with chaotic 
dynamics. 
While LM proved to be the most accurate, it was computationally expensive due to the need to 
compute the Jacobian matrix and its inverse. This limitation makes LM less suitable for large-
scale systems or real-time applications. Rprop and momentum-based methods required 
significantly fewer resources, making them more scalable and practical for embedded systems or 
online learning. 
To visually compare the learning performance, the training and test loss curves were plotted for 
each algorithm. These graphs clearly showed that LM reached the lowest error the fastest but had 
sharp increases in validation loss in some runs, highlighting potential overfitting. In contrast, 
Rprop maintained a smooth and stable loss curve, indicating balanced learning. 
These results suggest that there is no universally superior algorithm; the optimal choice depends 
on the specific application, available computational resources, and system complexity. For 
offline, high-accuracy applications, LM is preferable. For online or constrained systems, Rprop 
offers a good compromise between performance and efficiency [10]. 
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Figure-1. Comparison of training performance of different neural network algorithms in 

modeling nonlinear dynamic systems. 
The plot illustrates the decrease in Mean Squared Error (MSE) across training epochs for four 
learning algorithms: Gradient Descent, Gradient Descent with Momentum, Resilient 
Backpropagation (Rprop), and Levenberg–Marquardt (LM). Among them, the LM algorithm 
demonstrates the fastest and most accurate convergence, while Rprop maintains a stable and 
efficient learning process. Momentum-based GD improves over basic GD, but both are 
outperformed by the more advanced algorithms in terms of convergence speed and accuracy. 
Conclusion. This study presents a comprehensive investigation of various neural network 
training algorithms applied to the modeling of nonlinear dynamic systems. By evaluating the 
performance of standard backpropagation, momentum-based gradient descent, resilient 
backpropagation (Rprop), and the Levenberg–Marquardt (LM) algorithm across multiple 
benchmark systems, we derived valuable insights into the strengths and limitations of each 
method. 
The results demonstrate that the Levenberg–Marquardt algorithm is highly effective in achieving 
minimal training error and fast convergence, making it suitable for applications requiring high-
precision offline modeling. However, its computational intensity and susceptibility to overfitting 
in complex networks necessitate cautious parameter tuning and the application of regularization 
techniques. 
On the other hand, resilient backpropagation emerged as a robust and efficient alternative, 
especially in scenarios with limited computational resources or online adaptation requirements. It 
provided a stable learning process, good generalization to unseen data, and required minimal 
tuning. Momentum-based gradient descent also showed improved learning stability and 
generalization over basic gradient descent, although it lagged behind Rprop and LM in terms of 
convergence speed and final accuracy. 
Furthermore, the study highlights the critical importance of choosing the right training algorithm 
depending on the nature of the nonlinear system, the desired learning objectives, and hardware 
constraints. In real-time or embedded applications, lightweight and adaptable algorithms such as 
Rprop are preferable. In contrast, for data-rich and computationally permissive environments, the 
LM algorithm offers superior modeling capabilities. 
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Future research may explore the hybridization of these training approaches or the integration of 
metaheuristic optimization techniques (e.g., genetic algorithms or particle swarm optimization) 
to further improve convergence and generalization. Additionally, extending this work to 
recurrent neural networks and deep architectures could provide enhanced performance for time-
series prediction and dynamic control tasks. 
In summary, this research reinforces the idea that there is no one-size-fits-all training algorithm 
for nonlinear dynamic systems. The selection must be tailored to the system characteristics and 
application requirements, with careful consideration of the trade-offs between accuracy, 
efficiency, and adaptability. 

References. 
1. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Prentice Hall. 

2. Ljung, L. (1999). System Identification: Theory for the User (2nd ed.). Prentice Hall. 
3. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. PWS 

Publishing. 
4. Yu, W., Chen, G., & Cao, J. (2009). Nonlinear Control of Dynamic Systems with 

Constraints. Springer. 
5. Demuth, H., Beale, M., De Jess, O., & Hagan, M. (2014). Neural Network Toolbox™ User’s 

Guide. The MathWorks, Inc. 
6. Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural 

Networks and Fuzzy Models. Springer. 
7. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press. 
8. Beale, M. H., Hagan, M. T., & Demuth, H. B. (2020). Deep Learning Toolbox User's Guide. 

MathWorks Documentation. 
9. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation 

learning: The RPROP algorithm. Proceedings of the IEEE International Conference on 
Neural Networks, 586–591. 

10. Zhang, J., & Liu, Y. (2001). Identification and control of nonlinear dynamic systems using 
recurrent neural networks. IEEE Transactions on Neural Networks, 12(3), 567–576. 

 


