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Abstract: This survey reviews pose‐based deep learning methods for classroom behavior 
recognition, comparing recurrent (PoseRNN, Bi-LSTM), graph-convolutional (ST-GCN, Edge-
ST-GCN), attention-augmented (AGCN, TSST-GCN), and transformer (PoseFormer, 
ActionFormer) architectures. We highlight skeleton data’s advantages—privacy, robustness, and 
efficiency—and summarize each model’s trade-offs in accuracy, latency, and interpretability. 
Across benchmark datasets, graph-based approaches offer the best real-time performance, while 
transformers excel in capturing complex, long-duration actions at higher computational cost. 
Finally, we identify key research directions: multimodal fusion, personalized adaptation, bias 
mitigation, and edge-optimized deployment.  

 
1. Introduction 
Monitoring student behavior in classrooms is fundamental to improving learning outcomes, 
assessing engagement, and identifying individual needs (Cheng et al., 2020). Traditionally, this 
labor-intensive task has depended on educators or observers manually annotating actions, a 
process fraught with subjective bias and limited scalability (Ionescu et al., 2014). Recent 
advances in computer vision and deep learning have paved the way for automated behavior 
analysis. In particular, pose estimation frameworks such as OpenPose (Cao et al., 2019) and 
HRNet (Sun et al., 2019) can extract 2D skeletal keypoints in real time, supplying a privacy-
preserving abstraction of student movements. 
Once keypoints are obtained, deep learning models interpret these skeletal sequences to 
recognize specific behaviors. Early recurrent approaches, like the Hierarchical RNN of Du et al. 
(2015), treat each joint coordinate as a time step but struggle with long sequences. Spatial-
Temporal Graph Convolutional Networks (Yan et al., 2018) improved upon this by modeling the 
human skeleton as a graph, capturing both intra-frame joint relationships and inter-frame 
dynamics. Attention-enhanced variants (Shi et al., 2019) further refine focus on informative 
joints and critical time points, boosting robustness to irrelevant motion. More recently, 
Transformer-based methods adapted from natural language processing—such as PoseFormer 
(Liu et al., 2021)—leverage self-attention to learn long-range temporal dependencies, excelling 
at nuanced, prolonged behaviors but demanding larger datasets and compute resources. 
In educational settings, pose-based approaches offer distinct advantages: they minimize intrusion 
by avoiding raw RGB processing, protect student privacy by eschewing facial data, and 
generalize more effectively across diverse classroom environments (Mao et al., 2020). Their 
compact input format also reduces training and inference cost, making real-time, on-device 
deployment feasible (Krishnan et al., 2017). This survey organizes the literature into four 
themes—recurrent sequence models, graph-convolutional frameworks, attention-augmented 
networks, and transformer-style architectures—compares publicly available classroom datasets, 
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and outlines current challenges and promising research directions. By mapping this evolving 
landscape, we aim to guide future development of scalable, ethical, and high-fidelity behavior 
analysis tools for education. 

2. Related work 
In student behavior recognition, a variety of computer vision techniques are employed to 
interpret and classify actions in classroom environments. These include RGB-based models that 
use raw video frames, video-based methods that analyze sequences of frames over time, and 
hybrid systems that combine multiple modalities. Among these, pose-based methods have 
emerged as particularly efficient and adaptable. 
Pose-based approaches leverage skeletal representations extracted from videos using pose 
estimation frameworks. Instead of analyzing every pixel in an image, these models focus on the 
spatial positions and temporal dynamics of key body joints—such as the head, hands, shoulders, 
and elbows—over time. This abstraction significantly reduces data dimensionality and improves 
model interpretability. Furthermore, pose-based inputs naturally anonymize visual data, helping 
address privacy concerns in educational environments. 

2.1 Pose estimation methods 
Pose estimation refers to the task of detecting the positions of key body joints (e.g., head, 
shoulders, elbows, hands, hips, knees) in images or video frames. These keypoints form a 
skeleton-like representation of the human body, which serves as an abstracted yet informative 
input for action recognition systems. Advances in pose estimation have made it possible to 
extract accurate 2D and 3D skeletal representations in real-time, even in complex environments. 

Several widely adopted frameworks exist for pose estimation, including: 
Ø OpenPose: An open-source library for real-time multi-person 2D pose estimation using Part 

Affinity Fields. 
Ø Mediapipe: A Google-developed framework that enables fast and lightweight 2D pose 

extraction, often used in mobile and web applications. 
Ø HRNet: A high-resolution network that maintains detailed spatial information, leading to 

precise keypoint localization. 
Ø PoseNet: Suitable for web applications and mobile devices, though with limited precision 

compared to other models. 
The extracted pose data can be represented as raw coordinates, heatmaps, or skeleton graphs. 
These representations are typically passed into a deep learning model for classification. CNNs 
are frequently used to process spatial configurations, while RNNs or LSTMs model temporal 
sequences of poses across frames. Recently, graph-based methods (GCNs) and self-attention-
based models (Transformers) have demonstrated superior performance in action recognition 
tasks by leveraging structured relationships between keypoints or attending to informative time 
steps. 
In educational contexts, pose-based models are particularly appealing due to their ability to focus 
on body movement and gestures while ignoring irrelevant visual information such as background 
or classroom objects. Unlike RGB-based models that require heavy annotation and complex 
preprocessing, skeleton-based inputs simplify the action space while preserving meaningful 
motion dynamics. Additionally, their compact data representation allows for faster training, 
lower memory requirements, and better generalizability across different student populations and 
classroom conditions. 
2.2 Pose-Based Deep Learning Methods for Student Behavior Recognition 
Pose-based deep learning has emerged as a compelling approach for student behavior 
recognition, offering a privacy-aware, efficient, and semantically rich alternative to traditional 
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RGB-based methods. By relying on skeletal representations—abstracted data capturing human 
body joint positions—these models provide a streamlined, low-dimensional input that retains the 
critical elements of physical movement necessary for identifying student behaviors. 
Unlike pixel-heavy RGB images, pose data eliminates background noise, lighting variability, and 
facial identity, allowing models to focus exclusively on action-relevant dynamics such as hand 
movements, head tilts, and sitting posture. In educational environments, where sensitivity and 
non-invasiveness are key, these advantages make pose-based models ideal. This section reviews 
notable architectures that use pose as input, explains how they work, and evaluates their 
relevance to classroom behavior recognition. 
ST-GCN (Spatial-Temporal Graph Convolutional Networks). ST-GCN is a foundational 
model for action recognition using skeleton data. It represents body joints as nodes in a graph 
and uses edges to encode spatial (same-frame joint connections) and temporal (same-joint across 
frames) relationships. Through graph convolutional layers, the model captures how body parts 
move in relation to one another over time. 
In classroom contexts, ST-GCN has been used to detect gestures such as hand raising, writing, or 
leaning forward. Its graph-based nature makes it adept at modeling multi-joint coordination 
patterns, such as simultaneous head turn and arm motion during question answering. Its 
limitations lie in dealing with missing keypoints (due to occlusion) and reliance on accurate pose 
estimation. 
AGCN (Attention-Enhanced Graph Convolutional Networks). Building on ST-GCN, 
Attention-GCN introduces spatial and temporal attention mechanisms. Instead of treating all 
joints and time steps equally, it learns to weigh more informative joints (e.g., dominant hand) or 
frames (e.g., action peak moments) more heavily. 
This makes AGCN highly effective in classrooms, where not all motion is equally relevant. For 
example, slight shoulder adjustments during note-taking are less important than distinctive hand-
raising gestures. The attention mechanism improves robustness to irrelevant motion and 
enhances action classification performance. 
PoseRNN and Bi-LSTM-based Models. RNN-based approaches process sequences of pose 
frames using memory units like LSTM or GRU. PoseRNN treats each joint coordinate vector as 
an input step and models the temporal progression of the action. 
These models are interpretable and easier to implement but often struggle with long sequences 
due to vanishing gradients. However, in short-to-medium behaviors like turning pages or 
adjusting posture, PoseRNN performs well and is more lightweight than graph or transformer 
models. 
ST-GCN Variants with Edge Importance Weighting. An improvement to the original ST-
GCN design involves learning edge importance weights that modulate the strength of 
connections between joints. This allows the model to identify which spatial or temporal 
relationships are most important for classifying a given action. 
For example, in distinguishing "reading" from "writing," the importance of wrist-to-elbow 
dynamics might be higher than hip-to-shoulder relationships. These weighted edges make the 
graph representation more adaptive and context-sensitive. 
TSST-GCN and Dual-Stream Architectures. These models combine pose data with visual 
streams (RGB) or other modalities. In TSST-GCN, a two-stream network processes RGB frames 
and pose skeletons in parallel before fusing their learned features. 
While this hybrid approach improves accuracy, especially in ambiguous actions (e.g., reading vs. 
thinking), it sacrifices real-time efficiency and increases system complexity. It is most useful in 
offline analysis or research settings, where performance outweighs latency. 
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Transformer-Based Pose Models. Inspired by their success in NLP and vision tasks, 
Transformers have recently been adapted to pose-based action recognition. These models treat 
pose sequences as tokenized input and use self-attention to learn long-term dependencies across 
time. 
Models like ActionFormer, MotionFormer, or PoseFormer provide superior performance in 
recognizing subtle and prolonged behaviors, such as attentive listening or disengagement. Their 
scalability and parallel processing make them attractive for large-scale classroom deployments, 
though they demand more training data and compute resources. 
3. Results and Comparison 

Model Type Key Strengths Limitations Use Case 
Relevance 

ST-GCN GCN 
Spatiotemporal 
modeling, joint 

relations 

Sensitive to missing 
joints 

Hand-raising, 
writing, leaning 

AGCN GCN + 
Attention 

Focused learning, 
robust to noise 

Slightly increased 
complexity 

Selective behavior 
detection 

PoseRNN RNN Lightweight, 
interpretable 

Poor long-sequence 
performance 

Posture changes, 
short actions 

Edge-ST-
GCN 

GCN + Edge 
Weights 

Learns relation 
importance 

Requires tuning of 
weighting schemes 

Action 
disambiguation 

TSST-GCN Two-stream High accuracy, context 
aware 

Slow, resource-
heavy 

Offline detailed 
behavior study 

PoseFormer Transformer Long-term memory, 
high accuracy 

Data-hungry, not 
ideal for real-time 

use 

Deep behavior 
understanding 

Table 1. Comparative summary 
After reviewing existing pose-based architectures, it becomes clear that while many models 
share a common input format—skeleton data—they differ significantly in their modeling 
philosophy, complexity, and applicability to real-world classrooms. This section analyzes these 
models across practical dimensions: accuracy, interpretability, robustness to noise, 
computational cost, and adaptability. 
Among all models, Transformer-based approaches such as PoseFormer stand out for their 
superior accuracy and capability to model long-term dependencies. Their performance on 
academic benchmarks suggests strong potential for nuanced behavior detection. However, their 
reliance on large datasets and substantial compute resources makes them less viable for 
deployment in resource-constrained environments like public schools. 
Graph-based models, especially ST-GCN and its variants (AGCN, Edge-ST-GCN), strike a 
balance between performance and interpretability. Their structured design offers insights into 
joint-level dynamics and is robust to moderate pose noise. Attention mechanisms further refine 
focus on informative joints, making these models ideal for classroom gestures such as writing, 
pointing, or head-turning. 
RNN-based models, while less powerful in long-term temporal modeling, remain relevant due 
to their simplicity and lower latency. They are easier to train and interpret and can serve as a 
lightweight baseline for rapid prototyping or edge inference. 
In real-time scenarios, two-stream and hybrid models like TSST-GCN provide enhanced 
contextual understanding by combining pose with RGB input. These are well-suited for post-hoc 
analysis and behavior labeling but remain computationally intensive and impractical for 
continuous monitoring in large classrooms. 
In summary, the optimal choice depends on the deployment scenario. For high-stakes offline 
analysis, Transformer-based models are appropriate. For real-time classroom feedback and 
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scalability, graph-based models like ST-GCN or AGCN offer the best trade-off between 
interpretability and performance. 
4. Discussion on research opportunities and future directions 
Although significant strides have been made in pose-based student behavior recognition, several 
underexplored avenues promise to drive the next wave of innovation in this domain. One such 
direction is multimodal fusion with context-aware intelligence. By integrating skeletal data with 
complementary signals—such as eye-gaze tracking, audio cues, or physiological 
measurements—systems could infer not only overt gestures but also subtler indicators of 
confusion or engagement, enabling truly real-time, holistic insight into classroom dynamics. 
Closely linked is the need for personalization: instead of relying on static, one-size-fits-all 
models, future research should prioritize meta-learning and few-shot adaptation techniques that 
tailor predictions to individual student traits, learning styles, and diverse classroom 
configurations. 
Equally important is ensuring fairness and robustness. As these systems begin to inform 
pedagogical decisions, it is critical to audit and mitigate biases across demographics—age, 
gender, and ethnicity—to prevent unequal treatment. At the same time, the underlying pose-
estimation pipelines must become more resilient to occlusions, unusual camera angles, and 
varied lighting; uncertainty-aware preprocessing or model architectures that explicitly account 
for missing keypoints will be vital for reliable deployment in real-world settings. 
Finally, scalability and trustworthiness will determine practical impact. Edge-optimized 
models—achieved via compression, distillation, or other efficiency techniques—must deliver 
low-latency inference on local hardware without sacrificing accuracy. Semi-supervised and 
continual learning strategies can further reduce dependence on costly, fully annotated datasets, 
allowing systems to evolve alongside changing classroom behaviors. To foster teacher 
acceptance, these AI tools must also offer transparent explanations—through attention heatmaps, 
joint-relevance scores, or concise natural-language summaries—so that educators can 
understand, trust, and act upon automated insights. 

5. Conclusion 
Pose-based deep learning has rapidly advanced the field of student behavior recognition by 
offering a non-intrusive, data-efficient, and interpretable alternative to traditional vision-based 
models. With growing interest in educational analytics and classroom AI tools, these methods 
offer valuable insights into engagement, attention, and interaction. 
Our survey highlights the diversity of existing pose-based models—from graph-based ST-GCNs 
to attention-augmented and transformer models—and evaluates them in terms of their 
practicality for real-time and offline educational applications. Despite their progress, challenges 
remain in terms of fairness, generalization, and system transparency. 
Looking forward, integrating these models into classroom workflows in an ethical, inclusive, and 
teacher-friendly manner will be key to their impact. By combining technical advances with 
human-centered design, pose-based systems have the potential to become a core component of 
intelligent learning environments worldwide. 
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