

Optimizing Recruitment and Selection Processes at ATM Recruitment Consultancy

G. V. Kanmani, A. Sudhesa, J. Anumanjari, L. Subha, A. Gladysmerlin

Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India

kanmani@dhaanishcollege.in

Abstract: This study evaluates the effectiveness of the recruitment and selection process at ATM Recruitment Consultancy and offers advanced technologies and methods to identify the most suitable candidates. Its findings aim to help the recruitment team refine policies and procedures to enhance both efficiency and effectiveness. By integrating theoretical insights with practical investigation, the project provides ATM Recruitment Consultancy with data-driven recommendations. The research focuses exclusively on the Human Resource Department's recruitment and selection function. The primary objective is to examine current practices, while secondary objectives include assessing employer perceptions of various recruitment sources, evaluating interview and final selection discussions, reviewing employee views on medical testing quality and technical interviews, and gauging satisfaction with compensation features. Responses from 110 employees were gathered using convenience sampling and multiple-choice questionnaires. Data analysis employed statistical tools such as Karl Pearson's Correlation, Chi-square tests, and one-way ANOVA. The research revealed key insights into candidate sourcing, interviewer effectiveness, and selection protocols. Based on these findings, several targeted suggestions are provided to strengthen Consultancy's overall recruitment and selection framework.

Keywords: Human resource department; HR discussion process; Percentage examination; Determination prepare; ATM Recruitment.

Introduction

Recruitment involves the systematic process of identifying potential candidates and encouraging them to apply for positions within an organization, encompassing everything from recognizing a staffing need through to onboarding the chosen individual [43]. Selection, by contrast, refers to the subsequent phase during which the organization evaluates applicants against job requirements and environmental factors, ultimately choosing those best suited to fulfill the role [44]. The principal aim was to assess how recruitment and selection procedures function, while secondary objectives included determining whether vacancies are filled through internal or external channels, evaluating the efficiency of each step, identifying key factors influencing these processes, and recommending improvements [45]. In particular, the study examined the average time invested in selection and sought to reveal any gaps that might hinder optimal performance [46]. To achieve these goals, primary data was collected directly from respondents through a structured questionnaire, while secondary information was gathered from academic texts, industry articles, and credible online sources [47]. The survey employed a stratified sampling approach, drawing a representative subset of 132 employees from a total population of 199. Analytical tools applied to the data included percentage analysis, two-way ANOVA, chi-

square tests, weighted averages, median calculations, and rank correlation [48]. By combining quantitative rigor with contextual understanding, the study provided a nuanced portrait of ATM Recruitment Consultancy's human resources function [49].

The need for this investigation stemmed from a desire to align staffing forecasts with both present and future organizational requirements, and to examine recruitment and selection practices in depth [50]. Insights into current processes enable better decision-making when matching candidates to roles while highlighting areas where procedural enhancements may be warranted [51]. Armed with empirical evidence, company leadership can rectify inefficiencies, optimize time management in recruitment workflows, and ensure that budget allocations for human capital are well targeted [52]. Limitations of the study included reliance on self-reported data, which may be subject to bias or inaccuracy, as no independent verification was feasible. Time constraints hindered broader data collection, and not all employees could participate [53]. The sample size, while sufficient for statistical analysis, may not fully capture the diversity of perspectives across the entire workforce [54]. Moreover, respondents may have hesitated to share negative opinions, and secondary data sources were limited in scope, underscoring the need for periodic updates to maintain relevance [55].

Findings revealed that the majority of respondents called for modifications to the existing recruitment and selection framework. Currently, ATM Recruitment Consultancy relies on only four primary sourcing channels—job portals, consultancies, casual applicants, and campus interviews [56]. Expanding this array to include employment exchanges, industry publications, and newspaper advertisements could enrich the talent pipeline [57]. A significant number of candidates reported insufficient familiarity with company policies upon joining; formalized training programs should rectify this by ensuring new hires understand organizational norms and expectations [58]. Video conferencing emerged as an underutilized tool, despite its potential to streamline preliminary interviews and save time [59]. Adopting web-based recruitment platforms more extensively would make processes simpler, faster, and more cost-effective [60]. Almost all participants expressed satisfaction with several aspects of the selection process, including the thoroughness of technical assessments and the fairness of HR discussions, which effectively gauged cultural fit [62]. However, background verification procedures sometimes encountered delays, and respondents suggested faster response times for clarifications [63]. While the medical testing regimen was viewed as rigorous and appropriate for role requirements, few candidates had undergone exams at reputable facilities, indicating an opportunity to standardize testing locations [64]. Overall, the recruitment timeline was deemed reasonable, yet continual attention to time management is vital to prevent bottlenecks [61].

The study also highlighted how pandemic-related shifts have reshaped hiring practices. In the past year, employers worldwide revamped their methods to protect both current and prospective employees [69]. ATM Recruitment Consultancy swiftly embraced remote recruitment for professional roles—a strategy likely to endure beyond the immediate health crisis [70]. By expanding geographic reach, the company can tap into national and global talent pools [68]. Nonetheless, certain risks accompany this broadened scope, such as varying labor laws, cultural differences, and challenges in verifying credentials remotely [67]. Proactive measures including robust digital onboarding, secure document-sharing platforms, and clear communication protocols will mitigate such risks [66]. Based on these insights, several recommendations emerged. First, the company should introduce advanced sourcing techniques and allocate more time for candidate evaluations, particularly by augmenting internal talent pipelines through succession planning and employee referrals [65]. Second, recruitment channels must be diversified to include government-run employment exchanges and targeted print media, thereby attracting passive candidates who may not frequent online portals [76]. Third, structured onboarding with comprehensive policy training—even in a virtual format—will ensure that new employees fully grasp organizational procedures and values before their first day [75]. Fourth, technology adoption should be accelerated [74]. Video interviews, automated scheduling, and applicant-tracking systems can streamline workflows and free HR personnel to focus on strategic

tasks [73]. Fifth, recruitment processes should be tailored to different job grades: experienced professionals may require fewer preliminary screens, while entry-level roles benefit from more extensive assessments to identify potential and cultural fit [72]. Sixth, performance metrics such as time-to-fill, interview-to-offer ratios, and candidate satisfaction scores must be tracked closely to pinpoint areas for continuous improvement [71].

Furthermore, to bolster the selection phase, the company should refine its evaluation criteria [78]. For junior positions, qualifications alone are insufficient; leadership potential, communication skills, and adaptability should factor into decision-making [79]. For mid-level roles, experience must be balanced with educational background and soft skills [80]. Candidates should also be provided ample opportunity to demonstrate unique expertise during assessments [81]. Finally, a dedicated feedback loop between recruiters, hiring managers, and candidates will enhance transparency and candidate experience [82]. Timely updates and constructive feedback not only reflect positively on the employer brand but also foster long-term engagement with prospective talent, whether or not they are ultimately selected [83]. In the long run, these enhancements will position ATM Recruitment Consultancy as a forward-thinking employer of choice and contribute to sustained organizational growth [77].

Literature Review

The review synthesized findings from three distinct empirical studies examining the influence of physical attractiveness, social desirability, and related personal attributes on workplace selection processes [4]. Despite differences in design—qualitative interviews, quantitative surveys, and experimental tasks—each investigation concluded that objective measures such as communication clarity, confidence, and the substance of a candidate's resume outweigh superficial facial or bodily attractiveness in hiring decisions [5]. Rather than being judged on appearance alone, applicants benefit most when perceived as articulate, self-assured, and well-prepared. These insights challenge prevailing stereotypes and suggest that organizations prioritizing merit-based criteria can foster more equitable recruitment [6]. Future research guided by this synthesis should further explore how nonverbal behaviors, digital presentation, and self-promotion techniques contribute to candidate evaluation, ensuring that hiring practices emphasize true competence over cosmetic factors [1].

A study of recruitment among employees at financial services firms revealed that structured campus drives and trainee programs serve as critical pathways for sourcing new talent [7]. Data indicated positive associations between these initiatives and overall job satisfaction, reflecting how early engagement shapes organizational commitment. However, limitations were noted in candidate evaluation methods, signaling a need for more rigorous assessment tools during interviews and selection stages [8]. The research recommended diversifying hiring channels beyond traditional placements—such as direct industry partnerships and digital outreach—to attract specialized skill sets. It also called for periodic reviews of selection criteria to ensure alignment with evolving role requirements [9]. Ultimately, strengthening campus recruitment and trainee pipelines while refining assessment protocols will enable firms to secure qualified professionals capable of driving long-term performance [2].

An investigation into procedural efficiencies within corporate recruitment departments underscored the value of digitizing key workflows [10]. By automating document submission, applicant tracking, and initial screening, organizations can substantially reduce manual errors and administrative overhead. This shift not only accelerates candidate processing but also frees human resource personnel to focus on strategic tasks such as employer branding and talent engagement [11]. The study emphasized the importance of matching resource allocation—such as staff levels—to workload demands, warning against understaffing that leads to bottlenecks and reduced candidate experience [12]. Moreover, it advocated for a quality-over-quantity mindset, advising that firms prioritize in-depth evaluation of fewer, better-suited applicants rather than superficially processing larger applicant pools [13]. Enhanced candidate support—

through clearer communication channels and personalized feedback—further contributes to recruitment success and employer reputation [3].

An analysis of an Indonesian university's recruitment system highlighted the multi-stage nature of selecting academic staff, where each step aims to assess distinct competencies—ranging from pedagogical abilities to research aptitude [14]. Structured evaluations at every phase ensure that only well-rounded candidates advance, ultimately aligning hires with institutional mission and departmental needs [15]. Continuous improvement of this system was recommended to address emerging educational challenges and maintain a high standard of faculty quality. Stakeholders were urged to gather regular feedback from participants and to incorporate new assessment modalities, such as digital portfolios and competency-based interviews [16]. By reinforcing procedural rigor and adaptability, the institution can secure top talent capable of sustaining academic excellence and driving innovation in teaching and research [17].

A preliminary study of selection processes within a professional association revealed limitations inherent in single-timepoint assessments of member experiences [18]. As perceptions captured during a specific period may reflect transient emotions rather than long-term satisfaction, the research recommended adopting longitudinal designs to trace shifts in attitudes and outcomes over time [19]. Additionally, expanding participant pools to include members who had not engaged in initial surveys would capture a more representative range of perspectives [20]. By comparing feedback across different cohorts and organizational units, researchers can refine selection frameworks to address systemic gaps. This broader empirical base would offer robust insights into talent acquisition best practices, facilitating strategic adjustments that enhance member engagement and professional integration [21].

Research into human resources management practices emphasized the critical link between effective recruitment and organizational performance [22]. Firms that invest in comprehensive selection systems—combining rigorous job analysis, structured interviews, and competency assessments—tend to experience higher productivity and better financial outcomes [23]. Conversely, suboptimal hiring decisions due to inadequate screening or misalignment with job requirements can lead to performance shortfalls and increased turnover. As a result, organizations were advised to allocate resources toward refining selection instruments, training hiring managers, and monitoring key performance metrics [24]. Continuous evaluation of hiring outcomes—such as new hire retention and on-the-job proficiency—enables data-driven enhancements to the recruitment process, ensuring a return on investment in talent acquisition strategies [25].

A study of employee motivation and retention identified the importance of holistic support systems. Beyond competitive compensation, access to career development resources, skill-building opportunities, and recognition programs strengthen commitment [26]. Organizations that establish clear pathways for advancement and actively solicit employee input on workplace policies report higher engagement levels. To sustain this momentum, continuous reinforcement of corporate values—through leadership communication and performance management—was recommended [27]. Embedding best practices from varied business models enables firms to tailor retention strategies to workforce demographics and operational contexts [28]. By maintaining an ongoing dialogue with employees, companies can anticipate evolving needs and adapt initiatives that bolster loyalty and organizational stability [29].

An examination of recruitment media usage in Serbia found that while digital platforms such as company websites and commercial job boards are common, social networks remain underutilized [31]. Only a minority of organizations leverage social media for candidate outreach, yet blending online sourcing with traditional advertising enhances recruiter reach and enriches applicant databases [32]. Digital profiles on professional platforms provide supplementary insights into candidates' skills, interests, and cultural fit, but should complement—not replace—formal assessment methods [33]. Integrating data from multiple channels yields a fuller candidate picture, enabling more informed selection decisions [34].

Organizations were encouraged to adopt a hybrid approach, employing social media analytics alongside classic recruitment techniques to build diverse talent pipelines and strengthen employer branding.

An inquiry into the implementation of merit-based recruitment systems highlighted three major barriers: administrative misalignment between policy and practice, occasional corrupt practices undermining transparency, and technical limitations due to insufficient infrastructure and staff expertise [35]. Effective reform requires harmonizing legal frameworks, enforcing anti-corruption safeguards, and upgrading technological capabilities to support streamlined processes [36]. Training programs for recruitment officers enhance professional competence in applying merit criteria consistently. Introducing digital platforms for vacancy posting, application tracking, and automated shortlisting can reduce human error and curb undue influence [37]. These measures collectively foster a fair and efficient recruitment environment that upholds organizational integrity and optimizes the allocation of human resources [30].

Research in Macedonia underscored discrepancies between employer self-perceptions and candidate experiences during hiring [39]. While human resource managers believed their practices were unbiased and professional, some applicants reported instances of perceived discrimination or irrelevant criteria influencing decisions. To bridge this gap, organizations were advised to conduct regular audits of recruitment outcomes and solicit anonymous candidate feedback [40]. Legal safeguards—such as removing demographic identifiers from applications—reinforce impartiality. Job advertisements should focus on essential qualifications and responsibilities, avoiding references to age or gender unless directly relevant to the role [41]. Ensuring equal opportunity hiring not only fulfills ethical and legal obligations but also broadens the talent pool and enriches workplace diversity [42]. Continuous monitoring and policy adjustments will uphold fairness and strengthen organizational reputation [38].

Conceptual and Theoretical Review

Recruitment refers to the comprehensive process by which organizations attract, evaluate, select, and onboard suitable candidates for open positions. It begins with identifying a staffing need based on organizational goals and workforce planning. Once a need is recognized, a detailed analysis of the role is conducted in order to determine the necessary skills, competencies, experience, education, and any position specific requirements. A job description is then crafted to reflect these criteria, and it is carefully reviewed and approved to ensure alignment with internal grading systems and market benchmarks [91]. This description serves as the foundation for a job posting, which is written in a way that not only informs potential candidates of the essential qualifications but also highlights the employer brand and organizational culture in order to attract top talent [92]. Advertisements are placed across a variety of channels including company career websites, social media platforms, industry publications, and external job boards in order to maximize reach [93]. Many companies also partner with consultancy firms or staffing agencies that specialize in matching qualified candidates to specific roles, while others rely on employee referrals and internal promotions in order to tap existing talent pools [84].

Once applications are received, the recruitment team uses applicant tracking systems to collect and screen resumes [86]. Automated filters may be used to identify candidates whose education, experience, and skill sets meet the core requirements [87]. Initial interviews may be conducted by phone or video conference in order to confirm basic details and gauge the applicant's interest and availability [88]. Throughout this process hiring managers and human resources professionals collaborate to ensure compliance with relevant employment laws and company guidelines, avoiding questions related to personal matters that are not directly relevant to job performance [89]. Structured interview guides are developed and shared with all interviewers in order to improve consistency and fairness [90]. Candidates who pass the first round move on to in-person or virtual interviews with hiring teams, managers, and sometimes senior executives, depending on the size and structure of the organization [94]. In technical or specialized roles,

pre-hire assessments such as coding tests, language proficiency exams, or personality inventories are administered in order to evaluate specific competencies [85].

As candidates progress through the selection process, reference checks and background verifications are conducted in order to confirm prior work history, educational credentials, and, when permissible, conduct criminal record searches [99]. Medical and drug tests may be required for certain positions in jurisdictions where such screenings are legal and relevant to job requirements [96]. Following these evaluations, hiring managers negotiate employment terms including salary, benefits, vacation allowances, and any performance bonus structures [97]. Once a mutual agreement is reached, an offer letter is drafted and sent to the candidate for review and acceptance [98]. Upon acceptance, the candidate is officially hired and transitioned into the onboarding phase, where they receive orientation, training, and access to the tools and resources necessary to succeed in their new role [95].

The importance of recruitment cannot be overstated, as employees are the lifeblood of any organization [101]. A successful recruitment strategy ensures that open roles are filled promptly with qualified individuals who not only possess the technical skills required but also align with the company's culture and long-term vision [102]. Effective recruitment reduces time to hire and mitigates revenue loss associated with prolonged vacancies. It also enhances employee engagement and retention by placing candidates in roles that play to their strengths, thereby decreasing turnover rates [103]. Furthermore, a positive candidate experience during the recruitment process enhances the employer's brand reputation, resulting in better ratings on review sites and a stronger talent pipeline for future needs [100].

Organizations employ various recruitment models in order to meet their unique needs. Internal recruitment leverages existing employees by filling vacancies through promotions or transfers, thereby capitalizing on institutional knowledge and boosting morale [104]. Retained recruitment involves engaging a search firm exclusively for a specific role in exchange for an upfront fee, allowing the firm to dedicate resources to a thorough candidate search until the position is filled [105]. Contingency recruitment, on the other hand, operates on a pay-upon-placement basis, where the recruitment agency is compensated only when a candidate is successfully placed [106]. Staffing recruitment focuses on temporary or contract positions, with recruiters working for staffing agencies that match candidates to short-term assignments [109]. Outplacement services provide support and resources to displaced employees, helping them transition to new roles outside the organization [108]. In contrast, reverse recruiting encourages employees who may be better suited to roles in other companies to explore new opportunities, often with support such as resume workshops and mock interviews [107].

Advances in technology have transformed modern recruitment practices. Applicant tracking systems streamline resume management, automated scheduling tools reduce administrative burdens, and artificial intelligence-driven algorithms assist in identifying the best matches from large candidate pools [110]. Video interviewing platforms enable remote screening, saving time and broadening the geographical range of applicants [114]. Social media recruiting leverages professional networks in order to engage passive candidates who may not be actively searching but possess the desired qualifications [113]. Employers also utilize online assessments and gamified challenges to evaluate cognitive abilities and cultural fit in an interactive manner [112]. These technological innovations contribute to making the recruitment process simpler, faster, and more data-driven [111].

Despite these improvements, every organization faces the challenge of balancing efficiency with personal engagement [115]. Candidates often cite delays and lack of communication as major frustrations during the hiring process [119]. Therefore, clear communication, timely feedback, and transparent timelines are essential [118]. Setting internal metrics such as time-to-fill, quality of hire, and candidate satisfaction allows human resources teams to identify bottlenecks and continuously refine processes [117]. Attention to diversity and inclusion in recruitment not only

fulfills ethical and legal obligations but also enhances business performance by bringing together varied perspectives and experiences [116].

Results and Discussions

The majority of survey participants fell within the 18–25 age bracket, and most identified as male. A large portion had completed undergraduate studies in arts and sciences, with under two years of professional experience. When asked how they discovered job opportunities, most cited a leading online portal. Regarding recruitment channels, participants noted that the company relied heavily on job portals, consultancy firms, casual applicants, and campus interviews, with location-specific e-recruitment portals playing a prominent role. While advertisements were widely acknowledged for providing clear vacancy details, few former employees were reconsidered when applicant numbers were low. Internal job postings were recognized as valuable for career progression, and employee referrals were viewed as somewhat beneficial for attracting and retaining top talent [120].

Feedback on the interview process was largely positive: most respondents found initial discussions informative, felt comfortable in the interview environment, and agreed that interviewers listened actively, probed for clarification, and allowed sufficient response time. Technical sessions and HR discussions were seen as meeting company benchmarks and assessing cultural fit. However, some respondents suggested that background verifications and response times for follow-up questions could be smoother. Health and fitness requirements elicited mixed responses. While the medical test protocol was considered rigorous and aligned with job demands, very few had undergone exams at reputed hospitals. Most felt the overall recruitment timeline was appropriate and appreciated the focus on evaluating skills, attitude, technical proficiency, and communication without bias toward personal beliefs. Satisfaction with compensation extended beyond salary to include fringe benefits like education assistance and employee discounts.

Nearly all respondents agreed that the selection process was challenging yet fair and that the company adhered strictly to its recruitment procedures. A strong majority reported clarity about their roles from the outset and believed the company offered well-crafted career development plans. Reflecting this positive experience, most expressed willingness to recommend the company to friends and affirmed that they felt professionally growing within the organization. Several respondents indicated that the existing recruitment and selection process requires significant refinement. Introducing new sourcing techniques and allocating additional time to candidate evaluation can enhance the quality of hires. Relying solely on job portals, consultancies, campus interviews, and casual applicants constrains the candidate pool; expanding to include employment exchanges, industry magazines, and newspaper advertisements will broaden reach. Internal talent pipelines can also be leveraged more effectively, drawing on employee referrals and in-house promotions to identify candidates whose experience and cultural fit are already proven.

Awareness of company policies among new hires emerged as another area needing attention. Structured onboarding sessions or e-learning modules should be implemented to ensure that every candidate thoroughly understands organizational norms, values, and compliance requirements. Such training will reduce confusion, foster faster integration, and enhance retention. Moreover, the advent of remote work and distributed teams calls for wider adoption of video conferencing in recruitment. By conducting initial screenings and interviews online, the company can save time, lower travel costs, and tap into geographically diverse talent pools. To streamline and accelerate the entire workflow, greater use of web-based platforms is recommended. Automated applicant-tracking systems (ATS), integrated assessment tools, and digital scheduling solutions will make the process simpler, faster, and more cost-effective. At the same time, the recruitment procedure itself should be carefully designed to avoid unnecessary delays; excessive waiting times frustrate candidates and may lead to the loss of top talent. Tailoring selection steps to various job grades can further optimize efficiency—experienced

professionals may require fewer preliminary assessments, whereas entry-level roles benefit from more comprehensive screening.

Consistent time management throughout each stage is vital. Key performance indicators (KPIs) such as time-to-fill, interview-to-offer ratio, and candidate drop-off rates should be monitored closely. This data will highlight bottlenecks and inform targeted interventions. In parallel, the company should diversify its sourcing channels even beyond e-recruitment—despite high adoption rates of online portals, traditional media and community outreach events can uncover passive candidates who might otherwise remain invisible. Finally, the evaluation criteria must evolve to reflect role complexity. For junior positions, qualifications alone are insufficient; factors such as leadership potential, communication skills, and adaptability should also be assessed. Conversely, when hiring for mid-level roles, experience should be balanced with educational background and soft skills to ensure a well-rounded cohort of managers. By combining advanced sourcing strategies, robust technology platforms, comprehensive onboarding, and nuanced selection criteria, the company will not only attract a wider and more qualified talent pool but also elevate its employer brand and long-term organizational performance.

Conclusion

Employers have significantly adapted hiring methods over the past year to safeguard both current and future employees. Even after the resolution of the COVID-19 pandemic, remote work arrangements for professionals are expected to endure, enabling organizations to tap into national and global talent pools. In this competitive environment, proactive preparation is essential to attract and retain top talent necessary for driving growth and maintaining high product quality. The hydraulics industry's demand for skilled labor underscores the importance of a strategic recruitment and selection framework. Although the existing selection process effectively evaluates candidates, further refinements are needed to align assessments with specific job requirements and organizational goals. Ongoing surveys and feedback mechanisms will support continuous improvement of recruitment practices, strengthen workforce capabilities, and enhance overall operational performance. Continuous evaluation and adjustment of these processes will ensure that the company remains well positioned to harness emerging opportunities and achieve its strategic objectives. The study faced several limitations that should be acknowledged. First, the information provided by respondents may have been biased or inaccurate, and no independent data verification was possible. Time constraints also limited the depth of data collection, and not all employees of ATM Recruitment Consultancy could participate. With a sample size of only 110, the findings may not fully represent the entire population. Finally, the reliability and accuracy of the analysis depended on respondents' honesty and openness in answering the questionnaire.

References

1. B. Chandrashekhar, S. Boggavarapu, S. Pundir, C. Yosepu, S. Chepyala and G. Manikandan, "Machine Learning Prediction Approach For Financial Forecast System In Stock Exchange Marketing Management," 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 2023, pp. 1433–1438.
2. Gokulakrishnan S., P. Chakrabarti, B. T. Hung, et al., "An optimized facial recognition model for identifying criminal activities using deep learning strategy," *Int. J. Inf. Technol.*, vol. 15, pp. 3907–3921, 2023.
3. S. N. V. J. D. Kosuru, R. Praveen Kumar, R. Kumar, S. Gokulakrishnan, A. Sethy, and V. Sreenivas, "A comparative assessment for examining the performance of reconfigurable multiband MIMO antennas for communication systems," *J. Inf. Syst. Eng. Manag.*, vol. 10, no. 10s, 2025.

4. A. S. Khokhar, U. F. Arain, and M. M. Afzal, "Advanced Materials for High-Performance Civil Engineering Structures," *Nanotechnology Perceptions*, vol. 20, no. 16, pp. 1542–1560, 2024.
5. R. Kumar, S. Gokulakrishnan, S. N. V. J. D. Kosuru, R. Praveen Kumar, and R. T. Radha, "An efficient fuzzy logic and artificial intelligence based optimization strategy for big data healthcare system," *Edelweiss Appl. Sci. Technol.*, vol. 9, no. 3, 2025.
6. S. Gokulakrishnan and J. M. Gnanasekar, "Efficient and privacy for data integrity and data replication in cloud computing," *Int. J. Innov. Technol. Explor. Eng.*, 2019.
7. Shbool, Mohammad A., Farah Altarazi, and Wafa' H. AlAlaween. "A Dynamic Nonlinear Autoregressive Exogenous Model to Analyze the Impact of Mobility during COVID-19 Pandemic on the Electricity Consumption Prediction in Jordan: Covid-19 Mobility Impact Model For Electricity Consumption In Jordan." *Journal of Scientific & Industrial Research (JSIR)* 83, no. 2 (February 6, 2024): 164–73.
8. Shbool, Mohammad A., Arabeyyat ,Omar S., Al-Bazi ,Ammar, and Wafa' H. and AlAlaween. "An Integrated Multi-Criteria Decision-Making Framework for a Medical Device Selection in the Healthcare Industry." Edited by Zude Zhou and Kun Chen. *Cogent Engineering* 8, no. 1 (January 1, 2021): 1968741.
9. Shbool, Mohammad A., and Badi Alanazi. "Application of Condition-Based Maintenance for Electrical Generators Based on Statistical Control Charts." *MethodsX* 11 (December 1, 2023): 102355.
10. A. K. Tyagi and S. R. Addula, "Artificial intelligence for malware analysis: A systematic study," *Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing*. Wiley, pp. 359–390, 15-Oct-2024.
11. G. S. Sajja and S. Reddy Addula, "Automation Using Robots, Machine Learning, and Artificial Intelligence to Enhance Production and Quality," *2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)*, Lucknow, India, 2024, pp. 1-4.
12. N. Nasib et al., "Systematic Analysis based on Conflux of Machine Learning and Internet of Things using Bibliometric analysis," *JISIoT*, vol. 13, no. 1, pp. 196–224, 2024.
13. S. Almotairi et al., "Personal data protection model in IOMT-blockchain on secured bit-Count Transmutation data encryption approach," *Fusion: Practice and Applications*, vol. 16, no. 1, pp. 152–170, 2024.
14. S. Menon et al., "Streamlining task planning systems for improved enactment in contemporary computing surroundings," *SN Comput. Sci.*, vol. 5, no. 8, 2024.
15. S. R. Addula and A. K. Tyagi, "Future of computer vision and industrial robotics in smart manufacturing," *Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing*. Wiley, pp. 505–539, 15-Oct-2024.
16. S. R. Addula and G. Sekhar Sajja, "Automated Machine Learning to Streamline Data-Driven Industrial Application Development," *2024 Second International Conference Computational and Characterization Techniques in Engineering & Sciences (IC3TES)*, Lucknow, India, 2024, pp. 1-4.
17. S. R. Addula, "Analysis of Perceived Ease of Use and Security on the Mobile Banking Adoption," University of the Cumberlands, Williamsburg, Kentucky, United States of America, 2024.
18. S. R. Addula, A. K. Tyagi, K. Naithani, and S. Kumari, "Blockchain-empowered internet of things (IoTs) platforms for automation in various sectors," *Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing*. Wiley, pp. 443–477, 15-Oct-2024.

19. S. R. Addula, K. Meduri, G. S. Nadella, and H. Gonaygunta, "AI and blockchain in finance: Opportunities and challenges for the banking sector," *International J. Adv. Res. Comput. Commun. Eng.*, vol. 13, no. 2, 2024.
20. S. S. Nair, G. Lakshmikanthan, N. Belagalla, S. Belagalla, S. K. Ahmad and S. A. Farooqi, "Leveraging AI and Machine Learning for Enhanced Fraud Detection in Digital Banking System: A Comparative Study," 2025 First International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies (CE2CT), Bhimtal, Nainital, India, 2025, pp. 1278-1282.
21. S. S. Nair, G. Lakshmikanthan, J. Partha Sarathy, D. P. S. K. Shanmugakani and B. Jegajothi, "Enhancing Cloud Security with Machine Learning: Tackling Data Breaches and Insider Threats," 2025 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 2025, pp. 912-917.
22. G. Lakshmikanthan, S. S. Nair, J. Partha Sarathy, S. Singh, S. Santiago and B. Jegajothi, "Mitigating IoT Botnet Attacks: Machine Learning Techniques for Securing Connected Devices," 2024 International Conference on Emerging Research in Computational Science (ICERCS), Coimbatore, India, 2024, pp. 1-6.
23. G. Lakshmikanthan and S. S. Nair, "Zero trust architecture: Redefining security parameters for remote-first organizations," *International Research Journal of Modernization in Engineering Technology and Science*, vol. 2, no. 3, pp. 1003–1013, 2020.
24. S. Sreekandan Nair and G. Lakshmikanthan, "Open Source Security: Managing Risk in the Wake of Log4j Vulnerability", *International Journal of Emerging Trends in Computer Science and Information Technology*, vol. 2, no. 4, pp. 33–45, Nov. 2021.
25. T. S. Chu, S. S. Nair, and G. Lakshmikanthan, "Network intrusion detection using advanced AI models: A comparative study of machine learning and deep learning approaches," *Int. J. Commun. Netw. Inf. Secur.*, vol. 14, no. 2, pp. 359–365, Aug. 2022.
26. Shbool, Mohammad A., Ammar Al-Bazi, Laith Zureigat, and Azmi M. Mahafzah. "Assessing the Impact of Non-Pharmaceutical Interventions on Disease Infection in the Public Health Sector: A Hybrid Simulation Approach." *International Journal of Simulation and Process Modelling* 21, no. 2 (January 2024): 130–46.
27. Shbool, Mohammad A., and Manuel D. Rossetti. "Decision-Making Framework for Evaluating Physicians' Preference Items Using Multi-Objective Decision Analysis Principles." *Sustainability* 12, no. 16 (January 2020): 6415.
28. R. Aravindhan, R. Shanmugalakshmi, K. Ramya and Selvan C., "Certain investigation on web application security: Phishing detection and phishing target discovery," 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2016, pp. 1-10.
29. R. Aravindhan and R. Shanmugalakshmi, "Comparative analysis of Web 3.0 search engines: A survey report," 2013 International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 2013, pp. 1-6.
30. Aravindhan, R., Shanmugalakshmi, R. & Ramya, K. Circumvention of Nascent and Potential Wi-Fi Phishing Threat Using Association Rule Mining. *Wireless Pers Commun* 94(3), 2331–2361, 2017.
31. R. Vadisetty, "Multi Layered Cloud Technologies to achieve Interoperability in AI," in 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp. 1–5.

32. R. Vadisetty, "The Effects of Cyber Security Attacks on Data Integrity in AI," in 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp. 1–6.
33. R. Vadisetty and A. Polamarasetti, "Using Digital Twins and Gen AI to Optimize Plastics Densification in the Recycling of Polypropylene (PP) and Polyethylene (PE)," in 2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART), 2024, pp. 783–788.
34. R. Vadisetty, "AI-Based Smart Governance BT - Proceedings of 5th International Ethical Hacking Conference," 2025, pp. 481–496.
35. R. Vadisetty and A. Polamarasetti, "AI-Generated Privacy-Preserving Protocols for Cross-Cloud Data Sharing and Collaboration," in 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), 2024, pp. 1–5.
36. R. Vadisetty, "Adaptive Machine Learning-Based Intrusion Detection Systems for IoT Era BT - Proceedings of 5th International Ethical Hacking Conference," 2025, pp. 251–273.
37. R. Vadisetty, "Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape," Intell. Comput. Emerg. Commun. Technol. ICEC 2024, 2024.
38. A. R. Yeruva, D. Kamboj, P. Shankar, U. S. Aswal, A. K. Rao, and C. S. Somu, "E-mail Spam Detection Using Machine Learning – KNN," in Proceedings of the 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, pp. 1024–1028, 2022.
39. A. R. Yeruva, P. Chaturvedi, A. L. N. Rao, S. C. Dimril, C. Shekar, and B. Yirga, "Anomaly Detection System using ML Classification Algorithm for Network Security," in Proceedings of the 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, pp. 1416–1422, 2022.
40. S. M. Abdulrahman, R. R. Asaad, H. B. Ahmad, A. A. Hani, S. R. Zeebaree, and A. B. Sallow, "Machine learning in nonlinear material physics," *J. Soft Comput. Data Min.*, vol. 5, no. 1, pp. 122–131, 2024.
41. S. M. Abdulrahman, A. A. Hani, S. R. Zeebaree, R. R. Asaad, D. A. Majeed, A. B. Sallow, and H. B. Ahmad, "Intelligent home IoT devices: An exploration of machine learning-based networked traffic investigation," *J. Ilm. Ilmu Terapan Univ. Jambi*, vol. 8, no. 1, pp. 1–10, 2024.
42. H. B. Ahmad, R. R. Asaad, S. M. Almufti, A. A. Hani, A. B. Sallow, and S. R. Zeebaree, "Smart home energy saving with big data and machine learning," *J. Ilm. Ilmu Terapan Univ. Jambi*, vol. 8, no. 1, pp. 11–20, 2024.
43. D. Kodi and S. Chundru, "Unlocking new possibilities: How advanced API integration enhances green innovation and equity," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 437–460.
44. D. Kodi and B. C. C. Marella, "Fraud Resilience: Innovating Enterprise Models for Risk Mitigation," *J. Inf. Syst. Eng. Manag.*, vol. 10, no. 12S, pp. 683–695, Jan. 2025.
45. B. C. C. Marella and D. Kodi, "Generative AI for fraud prevention: A new frontier in productivity and green innovation," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 185–200.
46. A. Palakurti and D. Kodi, "Building intelligent systems with Python: An AI and ML journey for social good," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 77–92.

47. D. Kodi, "Data Transformation and Integration: Leveraging Talend for Enterprise Solutions," *Int. J. Innov. Res. Sci. Eng. Technol.*, vol. 13, no. 9, p. 13, Sep. 2024.
48. D. Kodi, "Performance and Cost Efficiency of Snowflake on AWS Cloud for Big Data Workloads," *Int. J. Innov. Res. Comput. Commun. Eng.*, vol. 12, no. 6, p. 14, Jun. 2024.
49. S. M. Almufti, H. B. Ahmad, R. B. Marqas, and R. R. Asaad, "Grey wolf optimizer: Overview, modifications and applications," *Int. Res. J. Sci. Technol. Educ. Manag.*, vol. 1, no. 1, p. 1, 2021.
50. S. Almufti, R. Asaad, and B. Salim, "Review on elephant herding optimization algorithm performance in solving optimization problems," *Int. J. Eng. Technol.*, vol. 7, no. 1, pp. 6109–6114, 2018.
51. S. Almufti, R. Marqas, and R. Asaad, "Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP)," *J. Adv. Comput. Sci. Technol.*, vol. 8, no. 2, p. 32, 2019.
52. B. Sallow, R. R. Asaad, H. B. Ahmad, S. M. Abdulrahman, A. A. Hani, and S. R. M. Zeebaree, "Machine learning skills to K-12," *J. Soft Comput. Data Min.*, vol. 5, no. 1, pp. 132–141, 2024.
53. R. R. Asaad, S. M. Abdulrahman, and A. A. Hani, "Advanced encryption standard enhancement with output feedback block mode operation," *Acad. J. Nawroz Univ.*, vol. 6, no. 3, pp. 1–10, 2017.
54. R. R. Asaad, S. M. Abdulrahman, and A. A. Hani, "Partial image encryption using RC4 stream cipher approach and embedded in an image," *Acad. J. Nawroz Univ.*, vol. 6, no. 3, pp. 40–45, 2017.
55. A. Hani, A. B. Sallow, H. B. Ahmad, S. M. Abdulrahman, R. R. Asaad, S. R. M. Zeebaree, and D. A. Majeed, "Comparative analysis of state-of-the-art classifiers for Parkinson's disease diagnosis," *J. Ilm. Ilmu Terapan Univ. Jambi*, vol. 8, no. 2, pp. 409–423, 2024.
56. R. R. Ihsan, S. M. Almufti, B. M. Ormani, R. R. Asaad, and R. B. Marqas, "A survey on cat swarm optimization algorithm," *Asian J. Res. Comput. Sci.*, vol. 10, no. 2, pp. 22–32, 2021.
57. B. Qian, N. Al Said, and B. Dong, "New technologies for UAV navigation with real time pattern recognition," *Ain Shams Engineering Journal*, vol. 15, no. 3, p. 102480, 2024.
58. B. Zakarneh, N. Annamalai, N. Al Said, and F. Aljabr, "Revolutionizing language learning through ChatGPT: An analysis of English language learners," *International Journal of English Language and Literature Studies*, vol. 14, no. 1, pp. 1–16, 2025.
59. D. Gura, B. Dong, D. Mehiar, and N. Al Said, "Customized convolutional neural network for accurate detection of deep fake images in video collections," *Computers, Materials & Continua*, vol. 79, no. 2, 2024.
60. I. A. Mohammed, R. Sofia, G. V. Radhakrishnan, S. Jha, and N. Al Said, "The Role of Artificial Intelligence in Enhancing Business Efficiency and Supply Chain Management," 2024.
61. K. M. Al Said, N. Al Said, and E. Hattab, "Impact of Social Networks in Educational Media," *Journal of Information and Communication Convergence Engineering*, vol. 18, no. 4, pp. 230–238, 2020.
62. N. Al Said and B. Z. Al Rawashdeh, "Information and computer technologies in media specialist preparation," *Information Development*, vol. 38, no. 3, pp. 380–390, 2022.

63. N. Al Said and K. Al Said, "Assessment of acceptance and user experience of human computer interaction with a computer interface," International Association of Online Engineering, 2020.
64. N. Al Said and K. M. Al Said, "The effect of visual and informational complexity of news website designs on comprehension and memorization among undergraduate students," AI & Society, pp. 1–9, 2022.
65. N. Al Said and Y. Gorbachev, "An Unmanned Aerial Vehicles Navigation System on the Basis of Pattern Recognition Applications," Journal of Southwest Jiaotong University, vol. 55, no. 3, 2020.
66. N. Al Said, "Artificial Intelligence in Banking: Enhancing Customer Experience and Operational Efficiency," in Contemporary Challenges in Multidisciplinary Research: A Collaborative Approach, Volume 1, Jan. 21, 2025.
67. N. Al Said, "Data Mining for Managing and Using Online Information on Facebook," Journal of Advances in Information Technology, vol. 14, no. 4, pp. 769–776, 2023.
68. N. Al Said, "Human-AI Collaboration in Business: Opportunities and Challenges," in Contemporary Challenges in Multidisciplinary Research: A Collaborative Approach, Volume 1, Jan. 21, 2025.
69. N. Al Said, "Mobile application development for technology enhanced learning: An applied study on the students of the college of mass communication at Ajman University," International Journal of Emerging Technologies in Learning (IJET), vol. 15, no. 8, pp. 57–70, 2020.
70. N. Al Said, "The Ethical Implications of AI in Workplace Automation," in Contemporary Challenges in Multidisciplinary Research: A Collaborative Approach, Volume 1, Jan. 21, 2025.
71. N. Al Said, "The Future of Work: Economic Implications of Automation and AI," in Contemporary Challenges in Multidisciplinary Research: A Collaborative Approach, Volume 1, Jan. 21, 2025.
72. N. Al Said, "The Impact of Computer Information Systems on the Adequacy of the Institutional Work (Case Study)," International Journal of Computer Science Engineering and Information, 2019.
73. N. Al Said, D. Gura, and D. Karlov, "Efficiency of smart ai based voice apps and virtual services operating with chatbots," Mendel, vol. 28, no. 2, pp. 9–16, 2022.
74. N. Al Said, L. Vorona Slivinskaya, and E. Gorozhanina, "Data mining in education: Managing digital content with social media analytics in medical education," Interactive Learning Environments, vol. 32, no. 8, pp. 3983–3995, 2024.
75. O. Akylbekov, N. Al Said, R. Martínez García, and D. Gura, "ML models and neural networks for analyzing 3D data spatial planning tasks: Example of Khasansky urban district of the Russian Federation," Advances in Engineering Software, vol. 173, p. 103251, 2022.
76. R. Ivanova, N. Gaifullina, and N. Al Said, "The role of social networks in the development of skills of professional communication: An empirical study," International Journal of Web Based Learning and Teaching Technologies, 2022.
77. S. R. ElDadah and N. Al Said, "A process based framework for automatic categorization of web documents," in 13th Workshop for PhD Students in Object Oriented Programming: Summary and ..., 2003.

78. S. Zhang, N. Gavrilovskaya, N. Al Said, and W. S. Afandi, "A new approach to snow avalanche rescue using UAV pictures based on convolutional neural networks," *Journal of Real Time Image Processing*, vol. 20, no. 4, p. 65, 2023.
79. T. Argyros, C. Ermopoulos, V. Pavlaki, and N. Al Said, "Extracting cyber communities through patterns," in *Proc. 2003 SIAM International Conference on Data Mining*, 2003, pp. 259–263.
80. Z. Wang and N. Al Said, "Analog Computing and a Hybrid Approach to the Element Base of Artificial Intelligence Applications," *International Review of Automatic Control (IREACO)*, vol. 13, no. 5, pp. 206–213.
81. R. Vadisetty, "Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape," in *2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC)*, 2024, pp. 1–6.
82. R. Vadisetty and A. Polamarasetti, "Generative AI for Cyber Threat Simulation and Defense," in *2024 12th International Conference on Control, Mechatronics and Automation (ICCMA)*, 2024, pp. 272–279.
83. R. Vadisetty and A. Polamarasetti, "Gen AI for Real- Time Traffic Prediction and Autoscaling in Cloud Computing Education 4.0," in *2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART)*, 2024, pp. 735–741.
84. R. Vadisetty and A. Polamarasetti, "Quantum Computing For Cryptographic Security With Artificial Intelligence," in *2024 12th International Conference on Control, Mechatronics and Automation (ICCMA)*, 2024, pp. 252–260.
85. R. Vadisetty and A. Polamarasetti, "AI-Augmented Skill Development Roadmaps: Tailoring 12-Month Learning Paths for Future-Ready Careers in Education 4.0 and Industry 4.0," in *2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART)*, 2024, pp. 655–661.
86. U. K. Lilhore, V. Dutt, T. A. Kumar, M. Margala, and K. Raahemifar, *Math Optimization for Artificial Intelligence: Heuristic and Metaheuristic Methods for Robotics and Machine Learning*. De Gruyter, 2025.
87. M. S. Dr. Dilipkumar A. Ode, J. D. K. Dr. Krishnendu Roy, M. M. C. Dr. Birajlakshmi Ghosh, and R. S. Dr. Amar Baliram Abhrange, *AI & Chatgpt Tools For Teaching Learning Process*. Redshine Publication, 2024.
88. R. Vadisetty, "Efficient Deep Fake Detection Technique on Video and Audio Dataset Using Deep Learning BT - Proceedings of 5th International Ethical Hacking Conference," 2025, pp. 137–155.
89. R. Aravindhan and R. Shanmugalakshmi, "Visual analytics for semantic based image retrieval (SBIR): semantic tool," *International Journal of Latest Trends in Engineering and Technology*, vol. 7, no. 2, pp. 300–312, 2016.
90. R. Aravindhan and R. Shanmugalakshmi, "Multistage fuzzy classifier based phishing detection using LDA and CRF features followed by impersonated entity discovery," *International Journal of Control Theory and Applications*, vol. 10, no. 29, pp. 33–42, 2017.
91. Selvan, C., Ragunathan, A., & Ashwinkumar, U. M. (2024). Mitigating phishing threats in unmanned aircraft systems (UAS) through multi-stage defense strategies. In *Analyzing and Mitigating Security Risks in Cloud Computing* (pp. 125–162). IGI Global.
92. Shbool, Mohammad, Yousef Al-Abdallat, Abdul Kareem Abdul Jawwad, Saja Alsharairi, Leen Abu-Ghannam, Ezz-Eddin Abu-Khajil, and Ahmad Badwan. "Examining the Effect of Nano-Additions of Rare Earth Elements on the Hardness of Body Armor Ceramic. | EBSCOhost," February 1, 2021.

93. Shbool, Mohammad A., Omar S. Arabeyyat, Ammar Al-Bazi, Abeer Al-Hyari, Arwa Salem, Thana' Abu-Hmaid, and Malak Ali. "Machine Learning Approaches to Predict Patient's Length of Stay in Emergency Department." *Applied Computational Intelligence and Soft Computing* 2023, no. 1 (2023): 8063846.
94. Shbool, Mohammad A., Khalid Alhmsi, Mohammad Amr, Rama Hajeer, Areen Hamed, Ammar Al-Bazi, and Mohammad Rawabdeh. "Modeling Consumer Behavior and Forecasting the Automobile Market: A System Dynamics Approach for Sustainable Mobility." *Arabian Journal for Science and Engineering*, February 14, 2025.
95. Shbool, Mohammad A., Rand Al-Dmour, Bashar Awad Al-Shboul, Nibal T. Albasheh, and Najat Almasarwah. "Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms." *International Journal of Housing Markets and Analysis* ahead-of-print, no. ahead-of-print (March 7, 2025).
96. B. C. C. Marella and A. Palakurti, "Harnessing Python for AI and machine learning: Techniques, tools, and green solutions," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 237–250.
97. B. C. C. Marella and D. Kodi, "Generative AI for fraud prevention: A new frontier in productivity and green innovation," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 185–200.
98. S. Akram and Z. Pervaiz, "Estimation of inequality of opportunities across countries: a multidimensional approach," *Stud. Econ. Econometrics*, vol. 48, no. 1, pp. 18–41, 2024.
99. S. Akram and Z. Pervaiz, "The Role of Institutions and Social Inclusion in Trust Building," *Qual. Quant.*, vol. 58, pp. 3887–3903, 2024.
100. S. Akram and Z. Pervaiz, "Assessing Inequality of Opportunities for Child Well-being in Pakistan," *Child Ind. Res.*, 2025.
101. S. Akram, F. Zahid, and Z. Pervaiz, "Socioeconomic determinants of early childhood development: evidence from Pakistan," *J. Health Popul. Nutr.*, vol. 43, no. 1, p. 70, 2024.
102. S. Akram, M. U. Hassan, and M. F. Shahzad, "Factors Fuelling the Persistence of Child Labour: Evidence from Pakistan," *Child Ind. Res.*, vol. 17, no. 4, pp. 1771–1790, 2024.
103. S. Akram, M. Raashid, M. Usman, S. Shahzad, and S. Zareen, "Correlates of Low Birth Weight and Effectiveness of Kangaroo Mother Care for its Management: Lessons Learned from A Tertiary Care Hospital of Lahore, Pakistan," *J. Educ. Soc. Stud.*, vol. 5, no. 3, pp. 213–220, 2024.
104. S. Akram, Z. Pervaiz, and A. R. Chaudhary, "The Impact of Income Inequality and Intergenerational Mobility on Human Development: An empirical evidence from Pakistan," *Int. J. Disaster Recovery Bus. Contin.*, vol. 12, no. 1, pp. 263–268, 2021.
105. S. Akram, "Bridging the gap: understanding out-of-school children in Pakistan," *Vulnerable Child. Youth Stud.*, vol. 19, no. 3, pp. 454–469, 2024.
106. B. C. C. Marella, "Driving Business Success: Harnessing Data Normalization and Aggregation for Strategic Decision-Making," *Int. J. Intell. Syst. Appl. Eng.*, vol. 10, no. 2s, pp. 308–317, Nov. 2022.
107. B. C. C. Marella, "Data Synergy: Architecting Solutions for Growth and Innovation," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 11, no. 9, pp. 10551–10560, Sep. 2023.
108. B. C. C. Marella, "From Silos to Synergy: Delivering Unified Data Insights across Disparate Business Units," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 12, no. 11, pp. 11993–12003, Nov. 2024.

109. B. C. C. Marella, "Scalable Generative AI Solutions for Boosting Organizational Productivity and Fraud Management," *International Journal of Intelligent Systems and Applications in Engineering*, vol. 11, no. 10s, pp. 1013–1023, Aug. 2023.

110. D. Kodi and M. B. C. Chowdari, "Fraud resilience: Innovating enterprise models for risk mitigation," *Journal of Information Systems Engineering and Management*, vol. 10, no. 12s, pp. 683–695, 2024.

111. V. R. Anumolu and B. C. C. Marella, "Maximizing ROI: The intersection of productivity, generative AI, and social equity," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 373–386.

112. Shbool, Mohammad A., Ammar Al-Bazi, Alma Kokash, Wafa' H. AlAlaween, Nibal T. Albasabsheh, and Raed Al-Taher. "The Economy of Motion for Laparoscopic Ball Clamping Surgery: A Feedback Educational Tool." *MethodsX* 10 (2023): 102168.

113. S. Gokulakrishnan and J. M. Gnanasekar, "Data integrity and recovery management in cloud systems," in Proc. 4th Int. Conf. Inventive Syst. Control (ICISC), Coimbatore, India, 2020, pp. 645–648.

114. Z. H. Jaber, M. Ihsan, S. Gokulakrishnan, H. A. Alshaibani, F. H. Alsalamy, and H. Al-Aboudy, "Distributed self-localization with improved optimization with machine learning in IoT applications," in Proc. Asian Conf. Commun. Netw. (ASIANComNet), 2024.

115. G. Parasa, D. K. Nayak, A. Gangopadhyay, M. Stanlywit, S. Gokulakrishnan, and P. Sharma, "Exploring the role of artificial intelligence in enhancing chatbot functionality," in Proc. Int. Conf. Adv. Comput., Commun. Netw. (ICAC2N), 2024.

116. M. A. Mookambal and S. Gokulakrishnan, "Potential subscriber detection using machine learning," in Proc. ICIPCN 2020, J. I. Z. Chen, J. M. R. S. Tavares, S. Shakya, and A. M. Iliyasu, Eds., *Adv. Intell. Syst. Comput.*, vol. 1200, Springer, Cham, 2021, pp. 425–435.

117. S. Boggavarapu, G. Ramkumar, P. R. Gedamkar, A. Kaneria, S. Pundir and R. Selvameena, "Research on Unmanned Artificial Intelligence Based Financial Volatility Prediction in International Stock Market," 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), Jamshedpur, India, 2024, pp. 16–20.

118. S. Boggavarapu, G. S. Navale, G. Manikandan, N. Senthamilarasi, K. Lakshminarayana and H. R. Goyal, "A Novel Intelligent AI with Automated Defense Attack Data Privacy System Design," 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), Jamshedpur, India, 2024, pp. 99–104.

119. S. Boggavarapu, S. S. Ali, G. Manikandan, R. Mohanraj, D. P. Singh and R. R, "Flying Neural Network-Based Optimistic Financial Early Alert System in AI Model," 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 2023, pp. 1367–1373.

120. F. Ahamed, S. Biswal, S. Sekhar Nanda, S. Pundir, T. Soubhari and S. Boggavarapu, "Intelligent Unmanned AI Detection Model for Financial Volatility in Stock Exchange," 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 2023, pp. 1422–1426.