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Abstract: The potential rupture of pipelines poses significant threats to the environment, human
safety and infrastructure integrity. To mitigate these risks, pipelines require constant monitoring
and maintenance to detect and rectify defects such as corrosion before they lead to failure.
However, the regular monitoring and non-destructive testing of pipelines incur substantial costs.
Consequently, there is a growing interest in research focused on predictive corrosion monitoring
of pipelines based on easily measurable operational parameters. This study was aimed to develop
predictive model for corrosion management in oil and gas pipelines in the Niger Delta area of
Nigeria.

Secondary data on mean corrosion rates, mean pH levels, mean temperatures, mean pressures,
and mean aqueous CO2 partial pressures were obtained from an oil and gas multinational
company spanning the years 2007 to 2011. Polynomial regression and Artificial Neural Network
(ANN) methodologies were chosen as suitable methods for data analysis. Polynomial regression
and ANN models were developed and subsequently optimized using a genetic algorithm. The
models' validity was assessed using Goodness of Fit Indices (GFI).

For the full second-degree quadratic polynomial model yielded the following results for both
training and testing data sets: Coefficient of Determination (R2) was 0.9869/0.9361, Root Mean
Square Error (RMSE) was 0.0007/0.0012, Mean Biased Error (MBE) was 0.0000/0.0002, Mean
Absolute Biased Error (MABE) was 0.0004/0.0008, Mean Percentage Error (MPE) was
0.0006/0.0636, and correlation coefficient (r) was 0.9934/0.9689. The goodness of fit for the
reduced second-degree model for both training and testing datasets provided the following
results: R2 was 0.9859/0.9341, RMSE was 0.0007/0.0012, MBE was 0.0000/0.0001, MABE was
0.0004/0.0008, MPE was 0.0006/0.0390, and r was 0.9929/0.9676. Hypothesis testing of the full
second-degree polynomial model for significance revealed that all model parameters were
significant at the 95% confidence interval, except for the coefficients related to the interaction of
mean pressure and mean aqueous CO2 partial pressure (X_(2) x_3) and the square of mean
aqueous CO2 partial pressure (x_472). Comparatively, the ANN model exhibited slightly higher
accuracy than the polynomial model, reinforcing the validity of the polynomial modelling and
interaction analyses. Furthermore, the goodness of fit indices for the ANN model during both
training and testing phases were as follows: R2 was 0.9965/0.9158, RMSE was 0.0004/0.0014,
MBE was 0.0000/-0.0003, MABE was 0.0003/0.0011, MPE was 0.0003/-0.0905, and r was
0.9982/0.9608. Through optimization with a genetic algorithm, it was determined that the
minimal corrosion rate occurred at mean pH of 8.446, mean temperature was 23.692°C, mean
pressure was 15.725 bar, and mean aqueous CO2 partial pressure was 2.022 bar. This research
contributes valuable insights into the technological applications and policy implications of
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predictive corrosion monitoring for pipelines. It also highlights avenues for further research in
this critical field.

Keywords: Oil and gas; pipelines; corrosion; model; hazard; validation; Optimization.

1. Introduction

Pipelines represent safety and pinnacle of efficiency in transporting oil and gas, owing to their
inherent low health risk profile in the absence of structural failures (Adegboye et al., 2019;
Parlak, and Yavasoglu, 2023). However, the aging and deterioration of pipeline infrastructure
emerge as formidable challenges within the pipeline industry. In comparison to alternative
modes of fuel transportation such as highways and railways, pipelines exhibit significantly
diminished safety and environmental risks. This assertion is supported by Popescu, and Gabor
(2021) who substantiated this claim through a quantitative analysis, revealing a rate of about
0.03 fatalities per billion ton—miles for pipelines in contrast to approximately 1.20 fatalities for
railway transportation and close to 9.22 fatalities for highway transportation.

It is notable that the proliferation of pipeline networks, surpassing 1,243 miles in length, has
occurred in more than 60 countries. This expansion followed the construction of the inaugural oil
pipeline, which measured 109 miles in length and had a diameter of 6 inches, in Pennsylvania,
USA, in 1879 (El-Abbasy et al., 2015; Borden, 2022). The progressive deterioration of pipelines
over time stems from their exposure to natural forces in their surroundings and the dynamic
pressures exerted by the transported fluids. If left unaddressed, this degenerative process
culminates in failure, accompanied by grave consequences, encompassing environmental
contamination, health hazards, and substantial economic losses (El-Abbasy et al., 2015).

The repercussions of pipeline failures extend to encompass severe economic, social, and
environmental devastations, resulting in substantial repair expenses, human injuries, extensive
environmental pollution, and widespread disruptions to daily life. Nigeria, a prominent oil-
producing nation, relies significantly on the income generated from oil and gas sales. According
to a report by the World Economic Outlook, between August 2022 and February 2023, primary
commodity prices fell by 28.2%, mainly due to a substantial 46.4% drop in energy commodity
prices. European natural gas prices notably plunged by 76.1%, driven by reduced consumption
and high storage levels. In contrast, base and precious metal prices rebounded, increasing by
19.7% and 3.3%, respectively. Food prices also saw a modest rise of 1.9% during this period.
This Special Feature analyzes how these declines, particularly in fossil fuel and mineral
extraction, have impacted the macroeconomic activity of commodity exporters (WEO, 2023).
Notably, data from 2016, reveals that petroleum exports by Nigeria in 2016 amounted to 27,788
million USD, representing a remarkable 80.1% contribution to the total export value of 34,704
million USD (Heim, 2019).

The extensive network of pipelines that crisscrosses Nigeria, as highlighted by Umar et al.
(2021) serves as the primary conduit for transporting the majority of the petroleum products of
the nation, covering a vast expanse of approximately 3,106 miles. Consequently, the issue of
pipeline failures, stemming from factors including material defects, corrosion, third-party
activities, mechanical loss, and environmental factors, has been extensively documented within
the Nigerian context. Furthermore, when compared to developed nations, Nigeria has
experienced an unacceptably high rate of pipeline failures in recent years (Umar et al., 2021).

Dawatola (2012) reported an alarming increase in pipeline ruptures in Nigeria, with more than
twenty cases in 2007 and over thirty cases in 2008. More recent data from the Nigerian National
Petroleum Corporation (NNPC, 2016) indicated a concerning trend, recording forty-nine cases of
pipeline rupture in 2015 and an even higher fifty-five cases in 2016. These statistics underscore
the urgent need for Nigeria, more so than any other nation, to address the pervasive issue of
pipeline failures and reduce them to levels comparable to those in developed economies. Such
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efforts are essential to harness the wasted resources and mitigate the severe consequences
associated with these failures, redirecting them towards more productive endeavors.

This study represents a significant step in this direction, focusing on model-based maintenance
strategies to minimize the risks of pipeline failure and its associated catastrophic consequences.
It is crucial to highlight that pipeline failures not only lead to economic losses but also pose
challenges to human lives and the environment. To put the gravity of pipeline failures into
perspective, one can recall the tragic incident in Lagos, Nigeria, in 2006, where a pipeline
explosion claimed the lives of over two hundred people (Dawotola, 2012). Such harrowing
incidents have left indelible marks on the histories of many other nations as well. Addressing this
issue is paramount to safeguard lives, protect the environment, and promote sustainable
development. The development of model-based approaches has emerged as a cornerstone in
modernizing pipeline transportation, offering a systematic and data-driven methodology to
optimize operations, enhance safety, and ensure the integrity of pipeline infrastructure (Aldoseri,
Al-Khalifa, and Hamouda, 2023). Model-based approaches leverage mathematical models,
simulation techniques, and advanced analytics to predict pipeline behavior, assess risks, and
inform decision-making across various aspects of pipeline operations.

Historically, pipeline operations relied on manual inspections, reactive maintenance strategies,
and periodic maintenance schedules. However, as technological advancements have accelerated,
there has been a paradigm shift towards model-based approach that harness the power of data
and computational modeling to drive improvements in efficiency, reliability, and safety (Molgda
et al., 2023). Corrosion involves the gradual loss of metallic material due to electrochemical and
mechanical processes. It poses a common threat to the structural integrity of aging oil and gas
pipelines. Over time, corrosion weakens the pipes, eventually leading to their failure
(Mahmoodian and Li, 2016), making it the primary cause of pipe failures in many countries.
During corrosion, metal atoms detach from the bulk material, forming compounds with oxygen
and water. Therefore, the proper management of pipeline integrity requires vigilant corrosion
monitoring through corrosion growth rate models, ensuring that corrosion does not exceed a
certain threshold to minimize the risk of failure.

In the corrosion process of pipelines, the main cathode reactants are oxygen, carbonic acid, free-
state H.S, and organic acids (Kahyarian et al., 2019). The rate of corrosion in a pipeline is
influenced by both external and internal factors. External factors encompass the working
environment of the pipe, such as soil chemistry and moisture for buried pipes, water chemistry
for submerged pipes, and air content for above-ground pipes. Internal factors include the
thermodynamic conditions (temperature and pressure), flow rate, pH level, and relative
electromotive force of the various materials within the pipeline system.

Dawotola et al. (2011) and Huang et al. (2023) recognized an extensively and robust validated
approach for the maintenance of oil and gas pipelines, focusing on those susceptible to long-term
corrosion-induced failure. Their primary objective was to optimize the inspection intervals for
these petroleum pipelines. The assessment criteria considered included both the frequency of
failure, determined by fitting a homogeneous Poisson process and power law, and the
consequences of failure. The latter aspect was evaluated in terms of economic losses,
environmental impact, and human safety, encompassing scenarios involving small leaks, large
leaks, and pipeline ruptures. The dataset employed in their analysis covered a range of corrosion
mechanisms, including uniform corrosion, pitting corrosion, and stress corrosion cracking. The
central focus of their innovative risk-based integrity maintenance optimization approach
revolved around determining the economic losses associated with pipeline failure while
considering human risk and maintenance budget constraints. To enhance the assessment's
accuracy, Dawotola and their team incorporated structured expert judgment to provide frequency
of failure assessments for identified failure mechanisms within the studied pipeline. They also
employed the Analytic Hierarchy Process (AHP) to obtain relative likelihood values for
attributes of failure mechanisms with very low probability of occurrence, thus contributing to a
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comprehensive risk management assessment for crude pipelines susceptible to rupture. Their risk
assessment methodology considered various failure mechanisms, calculating both the frequency
of failure and the potential consequences, typically measured in terms of historical costs
associated with failures, for different segments of crude oil pipelines. To demonstrate the
application of their methodology, they employed historical data from a real-world crude oil
pipeline owned by the Nigerian Petroleum Development Company (NPDC). This pipeline,
commissioned in 1989 to supply crude oil to the southwestern region of Nigeria, served as the
basis for combining frequency of failure and consequences of failure (Huang et al., 2023).

Dai et al. (2017) also delved into estimating the failure rate of cross-country crude product
pipelines using historical failure data. They conducted a comparative study involving two
hypotheses: one assuming minimal repair models along with a Homogeneous Poisson Process
(HPP), and the other assuming the same repair models but employing a non-Homogeneous
Poisson Process (NHPP). Their analysis led to the acceptance of the null hypothesis, indicating
that the number of corrosions occurring in onshore crude product pipelines follows the HPP
rather than the nHPP. This finding suggested that pipelines installed at the same time would
exhibit similar mean times between failures and failure intensities, all else being equal. This
conclusion was drawn from a comparative analysis of data from three different APl 5L X42
pipelines owned by the Nigerian National Petroleum Company (NNPC).

Dawotola et al. (2012) and Marhavilas, and Koulouriotis (2021) employed probabilistic methods
to develop an innovative methodology capable of assessing the acceptability of risk levels based
on cost-benefit analysis. They derived these acceptability criteria by considering historical trends
in non-voluntary deaths and overall national fatalities. Through this approach, they established
acceptable levels of individual and societal risk and showcased the methodology's applicability
to critical infrastructure, particularly petroleum pipelines. Within the scope of their study,
Dawotola et al. (2012) pursued an optimal maintenance strategy for a petroleum pipeline. This
strategy involved a structured expert judgment process that considered various failure
mechanisms. This judgment process led to the calculation of failure frequencies and the
determination of optimal maintenance intervals for petroleum pipelines based on these failure
frequencies. The optimization of maintenance intervals was carried out through two alternative
approaches: Use-based minimization, with the objective function being the expected total cost
associated with a petroleum pipeline. Maximizing the benefit/cost ratio of the pipeline while
simultaneously minimizing operational and failure costs. The latter approach was deemed less
data-intensive, making it a practical and efficient choice for optimizing maintenance strategies
(Marhavilas, and Koulouriotis 2021).

Consequently, employing these model-based methods presents the most viable avenue for
implementing condition monitoring and failure control across the extensive oil and gas pipeline
network in Nigeria. The study aims to further improve the predictive precision of state-of-the-art
methodologies and adapt the emerging new techniques to the Nigerian context, thereby
establishing a robust framework for addressing the critical issue of pipeline failures in the Niger
Delta Area of Nigeria.

2. Methods
a. Data collection

The secondary corrosion data obtained are: mean pH, mean temperature, mean pressure, mean
aqueous CO; and mean corrosion rate were obtained from an oil and gas multinational company
in Nigeria. However, for data privacy and confidentiality reason, the company name is not
provided. The data set were collected from 2007 to 2011.

Data analysis

The polynomial regression analysis was used to analyze the obtained data. The first and second
polynomial regression were used, models were developed in both case. Polynomial regression
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was chosen for the analysis because it gave high performance indices using the Goodness of Fit
Indices (GFI). Models were developed.

b. Model Development

The much more advanced generalized approach which cover general-order polynomial analyses
is effectively handled on the framework of vector/matrix algebra. For such analysis the response
is generally related to the predictors as follows (Levin, 1998);

oy(x) = [a()]" (XL, a(x)[a(x)"} 1 L, alx)y; +e )
Where: a(x) = {a;(x)a,(x) ...a,(x)}"is the polynomial of basis vectors

a;(x) represent any of all the possible interactions of the independent variables from zero to
order p.

n is the number of experimental/sampling runs
d is the number of independent variables.

The length r of a(x)is generally given as r = wdf—;")!. In the polynomial model, the numerical
term
b= {3 alx)[a(x)])"} " T, alx)y; (2)

represent the vector of the model coefficients in terms of the data sets of the predictors and the
targets. A good understanding of how to handle equation (2) is all that is need in polynomial
regression. For illustration with some of the simplest multiple linear regression cases, consider
two predictors, x; and x.

For the first degree (1stPRA) case:

1
a(x) = {%} 3)
X2
and
1 ! 1
b = lZ?ﬂ {xli} {1y % }l Di=1 {xli})’i 4)
X2i X2i
where the summation signs in equation (3.4) apply element-by-element to the matrix
1 1
{Xu} {1 x4; x5; } and the vector {xu} y;. Therefore
Xpi X2i
-1
=11 i1 %1 Y1 Xai LiYi
b=|Yixy  Thaxh Tihixxe 2i=1 X11Yi ®)

=1 %20 D=1 X1iX2 o1 X5 Yiz1 X2iy;

For the quadratic case

1

(i)

X2

a(x) =4 2 (6)
X1X2
X3

and
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X1i
n X2i 2 2 n
b = i=1{ x2, }{1 X1i X2i X1; X1i%2; X3;} i=1
[ 2152 |
i x3;
This becomes
b =
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n
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n 2
\ Dis1 X3,V

Many regression models have more than two predictor variables. For such systems, it can be
inferred from the foregoing that the response in linear regression is simply represented in the

form of simple summation as follows;
y=a,+Xiax; +e

Where: a; are the coefficients,

x; is the ith of d predictors

(8)

e is the error of the analysis which is assumed to be normally distributed.

Excluding the error and substituting n measured/sampled data points in equation (8) becomes

1
y®P =a,+3%, al-xl-( )

2
y@ =a,+3%, al-xl-( )

y(n) =ap + sz=1 aixi(n)

(92)

On minimizing the sum of square errors between the left- and right-hand-side of equation (9b),

the normal equations
)]

2jayP = nag+ XLy a; X x;
(D, ) @M.,
?zlxlj y9 = a02?=1x§] + 31 a; ?:19‘1] xi(]

Z;_lzlng)y(j) = aOZ’;:lxg’) +¥% . q ;‘zlxéj)xi(})

Z?=1 xé])y(j) = Qo Z?ﬂ x(gj) + Z?=1 a; ?:1 xé])xi(j)

(10a)
(10b)
(10c)

(10d)

are generated. These normal equations are solved simultaneously to give the coefficients a, and

a;.

The general quadratic model for the problem deriving from equation (1) reads

_ d 2d 2
Y=g+ Xicq QX + Xitqr1 QuiXi + Dk Ay XXk
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Substituting n measured/sampled data points in equation (8) becomes

1)2 1 1
= +Zl-‘#kalkx() w

(2)2 @) (2)
+ ld+1allx +Zl¢kalkx xk

1
y(l)_a0+21 1ax()+ i= d+1allx
y@ =qy+ 3%, q x(z)
(12)

m 4 (n) (n)

l d+1 ”x(‘n)Z +Zl¢ alkx
Also, for the quadratic (2ndPRA) case, on minimizing the sum of square errors between the left-
and right-hand-side of equation (12), the normal equations

Z?:l y(j) = nao + Z?:l a; 7 (]) + d+1 Qi Z
(13a)

y(n)_ao+21 1 aiX;

(1)2 M.

+Zl¢kalkz 1x xk

n

n
z Dy = q Z (1)+Z "2 Dy 4 z z (2
— = i= d+1
n Z ik Z xDx D
i#k =

(13b)
n n
Z y(]) = a z (J)_I_z 2 oM (J) z z ) (1)2
= lj= i= d+1
n Z ik Z MOMOMO
ik :
j=
(13c)
n
z y(]) = a, Z (J)_I_z z 0, (J) Z Z ) _(1)2
j=1 i= d+1
n z ik z xé’) xo) x}g)
ik .
j=
(13d)

are generated and solved simultaneously to give the coefficients ay, a;, a;; and a; ;.
For four-predictor system, which specially apply to this study, this is expanded to read

Y = Ao+ a1y + A%, + agxs + ayxy + Ay 2% X + Q13X X3 + Ay 4X1%, + Ay 3X5X5 + (g 4X5%,,
+ A3 4X3X4 + Q11 X7 + A 2X5 + A3 3X5 + Ay 4X2

(14)
Then, the arising normal equations are
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n n n n n
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n
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a, Zj=1xi(])x1(<])x§]) +a, 2;‘:1 xi(])xi(c])xi]) +a, ijl xf”x,ﬁ”xf)xé’) +

a3 Zj:l xi(])x,((])xij)xgn +ag, 2j=1 xi(])xz(cj)xij)xi]) +a,, Zj:l xi(])x,gj)xg)xéj) +

a4 Zj:l xi(J)x,EJ)xéj)xij) +as, Zj:l xf’)x,ﬁ”xg’)xi” +a;, Zj:l xi(])xlgj)xij) +
j j )2 j j )2 j j )2
a,, 2]_:1 xi(])xz(c])xg) +ass ijl xi(J)x]EJ)xgj) +ag, ijl xi(])xl(cj)xij)

(15)

where i=1, 2,..., d and k=1, 2,..., d. The 15 linear simultaneous equations in 15 unknown
coefficients can then be solved for the quadratic model.

When regression model is based on one to two predictors, it will be easy to graphically present
the variation of the response with the predictor/s in a one- or two-dimensional spaces. These are
illustrated in Figures 1 and 2. In many cases, as is the case in this work, one- or two-dimensional
spatial graphs are not practicable when the number of variables is more than 3. This case,
graphical representation of results is usually shown in terms of the variation of the target
responses with the predicted responses and the goodness of fit measured in terms nearness of
slope to unity and intercept to nullity, see Figure 3 which is based on the same data as Figure 2.
The figure 1 and 2 were plotted using 2018 version of Matlab software.
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Figure 1: Variation of a response with a predictor. The MatLab data “census” was used to
generate this plot.
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Figure 2: Variation of a response with two predictors. The MatLab data “franke” was used
to generate this plot.
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Figure 3: Variation of the response target with the response predictions. The MatLab data
“franke” was used to generate this plot.

c. Validation of the model using Artificial Neural Network (ANN)

The artificial neural network was used to validate the polynomial regression analysis. It was also
used because it gave a higher performance indices using Goodness of Fit Indices (GFI),
validating the regression analysis. Model was developed.
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d. Optimization of the model

Genetic Algorithm is used for the optimization of the mode. Because the model that emerges
(referred to as equation 17) becomes intricate when considering its four independent variables,
the genetic algorithm is chosen as the means for optimizing it, specifically to minimize
corrosion. This genetic algorithm is applied to optimize objectives, whether they entail
constraints or not. The rationale behind opting for a genetic algorithm is its effectiveness in
tackling challenging optimization problems that do not align well with conventional optimization
algorithms. These problematic scenarios include those characterized by objective functions that
are discontinuous, non-differentiable, stochastic, highly nonlinear, and those involving mixed
integer programming.

3. Results and Discussions
3.1. Second degree (quadratic) model.

To develop the second-degree (quadratic) model, the data are inserted in the normal equations
(13). The training data subset are randomly sampled 80% of the full data set while the testing
subset are the remainder. As done earlier for the first-degree case, the inserted response data y

is the mean corrosion rate given in Figure 4 and the inserted predictor data xl.(j) are the mean pH,
mean temperature, mean pressure and mean aqueous CO- partial pressure.

The normal equations are then solved simultaneously to give the coefficients a, and a;. The
results are graphed given in Figure 4 to show that the second-degree polynomial linear
regression gives predictions that correlate very well with the input data. It can be seen that the
model captures the responses very well since the testing results validate the training results as
can be seen from the co-graphing of training and testing results on Figure 4.8. This points to a
conclusion that the developed model will perform to similar extent as when the model is trained
when independent field data are introduced.

The parameters of the model are summarized Table 1. It can be seen from the table that the
model is specifically given as

y = —0.96139 + 0.088173x, + 0.043456x, + 0.015383x5 + 0.23259x, —
0.0030606x;x, — 0.0015876x,x5 — 0.11871x,x, — 9.8756 X 10 5x,x5 + 0.023881x,x, +
0.0028826x5x, + 0.012291x% — 0.00096625x2 — 0.00011784x2 + 0.0030086x2

(16)

The second-degree model coefficients are tested for significance. The numerical measures of the
significance are given in Table 1. It can be seen that all parameters of the model are significant at
95% confidence interval except the coefficients of the interaction of mean pressure and mean
aqueous CO- partial pressure (x,x3) and the square of mean aqueous CO; partial pressure (x2).
These mean that the two second-degree variables are not relevant to the model and can be
excluded without significantly affecting the model.

Table 1: The second-degree model and the hypothesis testing results

Coefficient SE TStat pValue
Intercept -0.96139 0.063413 -15.161 4.2183e-25
X1 0.088173 0.0095346 9.2477 3.1964e-14
Xy 0.043456 0.0030395 14.297 1.2793e-23
X3 0.015383 0.0012426 12.38 3.4653e-20
X4 0.23259 0.023144 10.05 8.8314e-16
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X1Xp -0.0030606 0.00021012 -14.566 4.3696e-24
X1X3 -0.0015876 0.00013376 -11.869 3.0635e-19
X1X4 -0.11871 0.0027118 -43.777 3.6725e-57
X2X3 -9.8756e-05 4.2885e-05 -2.3028 0.023921
X3X4 0.023881 0.00086446 27.625 2.3791e-42
X3X4 0.0028826 0.00053495 5.3886 7.1403e-07
x12 0.012291 0.00057182 21.495 9.5268e-35
x22 -0.00096625 6.1963e-05 -15.594 7.9054e-26
x32, -0.00011784 1.8073e-05 -6.5203 6.0793e-09
xZ 0.0030086 0.0033919 0.88698 0.37778
0.31
= ¥  training
? O  testing
L ideal

£ 03

2

o

C

© 0.29 ¢

[72]

o

S

(&]

€ 0281

o

€

©

2

© 027

e}

o

o

0.26 1 1 1 1

0.26 0.27 0.28 0.29 0.3 0.31
measured mean corrosion rate [mm/yr]

Figure 4: The correlation of the predictions with the measured data for the second-degree
regression model.

It can be seen that the model captures the responses very well since the testing results validate
the training results as can be seen from the co-graphing of training and testing results on Figure
1. This points to a conclusion that the developed model will perform to similar extent as when
the model is trained when independent field data are introduced.

Table 2: The goodness-of-fit indices of the second-degree model

GFI Training Testing
R? 0.9869 0.9361
RMSE 0.0007 0.0012
MBE 0.0000 0.0002
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MABE 0.0004 0.0008
MPE 0.0006 0.0636
r 0.9934 0.9689

The goodness-of-fit indices of the second-degree model are summarized in Table 2 to compare
directly the predicted responses against the measured responses. It can be seen that the R? is
almost unity at 0.9869 and the correlation (r) coefficient is almost unity at 0.9934. These indicate
a very accurate second-degree polynomial regression for corrosion.

The observation that two second-degree variables (the interaction of mean pressure and mean
aqueous CO; partial pressure and of the latter) are not relevant to the model and can be excluded
without significantly affecting the model can be verified by reworking the regression to seen the
impact on the model performance indicators.

3.2. The Reduced Second-Degree Model

The results are presented in Equation 17, Figure 5, Tables 3 and 4 present the veracity of the
observation in terms similarity of the values with the corresponding indicators for the full model

in Equation 17, Figure 5, Tables 3 and 4.

y = —0.93980 + 0.087521x, + 0.043510x, + 0.0136527x; + 0.2274035x, —
0.00316755x,x, — 0.00157643x,x5 — 0.11742780x,x, + 0.0242314756x,x, +

0.0026338902x5x, + 0.012384649x% — 0.000997065x2 — 0.0001334789x3

17)

Table 3: The reduced second-degree model and the hypothesis testing results

Coefficient SE tStat pValue

Intercept -0.93980 0.06432344 -14.6106096 2.04989253e-24
X4 0.087521 0.0097881 8.94162774 1.0363354e-13
Xy 0.043510 0.00311802 13.9544395 2.9785469e-23
X3 0.0136527 0.00101308 13.4763858 2.1650894e-22
X4 0.2274035 0.02198834 10.3420047 1.8162327e-16
X1X5 -0.00316755 0.000210252 -15.065517 3.3101078e-25
X1X3 -0.00157643 0.000137267 -11.4843421 1.1233545e-18
X1X4 -0.11742780 0.002667005 -44.02983497 2.4276929e-58
XXy 0.0242314756 0.0007811680 31.0195436 1.0304365e-46
X3y 0.0026338902 0.0005068729 5.19635296 1.4876765e-06
x5 0.012384649 0.0005852508 21.1612679 9.5914389e-35
x5 -0.000997065 6.238412378e-05 -15.9826743 9.0802652e-27

X3 -0.0001334789 1.712118786e-05 -7.79612124 1.891749815e-11
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Figure 5: The correlation of the predictions with the measured data for the reduced
second-degree regression model

Table 4: The goodness-of-fit indices of the reduced second-degree model

GFI Training Testing
R? 0.9859 0.9341
RMSE 0.0007 0.0012
MBE 0.0000 0.0001
MABE 0.0004 0.0008
MPE 0.0007 0.0390
r 0.9929 0.9676

The goodness-of-fit indices of the reduced second-degree model are summarized in Table 4 to
compare directly the predicted responses against the measured responses. It can be seen that the
R? is almost unity at 0.9859 and the correlation coefficient r is almost unity at 0.9929. These
results according to Ali et al. (2023) demonstrate that corrosion is not only affected by the
predictors but also by their self and cross interactions as wide difference in predictive accuracy
between the first-order and second order polynomial models. From the findings of this study, it
can be deduced that the first-degree polynomial linear regression gives predictions that fairly
correlate with the input data as can be seen from then fairly positive trend about the ideal
(Sarker, 2021). Even though the model captures the responses poorly, the predicted testing
results validate the predicted training results showing that the developed model will perform to
similar extend when independent field data are introduced as when the model is trained. It can be
seen also, that all parameters of the model are significant at 95% confidence interval except the
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coefficients of the interaction of mean pressure and mean aqueous CO. partial pressure (x,x3)
and the square of mean aqueous CO- partial pressure (xZ). This suggests that the two second-
degree variables are not relevant to the model and can be excluded without significantly
affecting the model and can be verified by reworking the regression to see the impact on the
model performance indicators.

These results demonstrate that corrosion is not only affected by the predictors but also by their
self and cross interactions as wide difference in predictive accuracy between the first-order and
second order polynomial models.

3.3. The ANN Results
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0.26 ) ) ) ;
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Figure 6: The correlation of the predictions with the measured data for the ANN Model

MatLab neural network tool is used for modelling the corrosion data. Figure 6 shows modelling
results which graphically indicates that a highly reliable network has been trained.
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Figure 7: A typical setting used for ANN modelling

Figure 7 summarizes most of the settings used in training the neural network. The architecture is
simple, having one single hidden layer with ten neurons. The data set was randomly divided into
training 80% and testing subsets 20% of the data set (the same random subsets used in for the
above regression analyses).

As implemented in MatLab, the Levenberg-Marquardt backpropagation algorithm, given as
X1 = X + [JT) +pl] 7Y Te (18)
Where:

J is the Jacobian matrix made of first derivatives of the square errors with respect to the biases
and weights of the artificial neural networks

e is a vector of network square errors, is triggered with the command trainim.
Equation (18) is given here to highlight the importance of the parameter p.

The algorithm initially employs the Newton's method, which involves approximating the Hessian
matrix when the scalar p is set to zero. However, as 1 grows larger, the algorithm transforms into
a gradient descent approach with a small step size. When approaching an error minimum, the
algorithm prioritizes transitioning to Newton's method, which is faster and more accurate.
Consequently, the value of p is decreased after each successful step, and it is only increased
when doing so would enhance the performance function.

The Levenberg-Marquardt algorithm that is based on standard back propagation technique
algorithm is adopted as the training algorithm to iteratively updates weight and bias values. The
default performance criterion of the tool, the mean square error, is adopted.

The best training performance of 1.28 x 10~7 occurred at the 171th epoch, see Figure 7.
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Figure 8: Training and testing performance with epochs

Maximum number of epochs to train the network is set at the default value of 1000. As shown in
Figure 8, the performance is tracked during training by computing the mean square error at every
epoch and comparing with the pre-set performance goal. The default value is zero. If the
performance goal is reached before the 1000™" epoch, the training is stopped. That is why Figure
8 shows that the training was terminated after 171 epochs.
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Figure 9. Error frequency

Figure 9 shows a histogram of error frequencies. It can be seen that, as typical of a good model,
the smaller errors are more frequent.
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Table 5: The goodness-of-fit indices of the ANN model

GFI Training Testing
R? 0.9965 0.9158
RMSE 0.0004 0.0014
MBE 0.0000 -0.0003
MABE 0.0003 0.0011
MPE 0.0003 -0.0905
T 0.9982 0.9608

The goodness-of-fit indices of the ANN model are summarized in Table 5 to compare directly
the predicted responses against the measured responses. It can be seen that the R? is almost unity
at 0.9965 and the correlation coefficient is almost unity at 0.9982. These indicate a very accurate
ANN for corrosion. It can be observed that ANN is somewhat better than the developed
regression models based on these GOF indices: note that for the quadratic model, R? is 0.9869
and the correlation coefficient is 0.9934

Even though the inclusion of the interaction effects of the predictors improved the prediction
accuracy of the second-degree polynomial model, ANN approach was still slightly more accurate
than the linear regression. But, the latter being a black-box model which cannot be used for
symbolic optimization analysis, it is viewed as a validation for the polynomial model.

3.4. Optimization of the model

Given that the model introduced in Equation 17 involves four independent variables, its
optimization (with the goal of minimizing corrosion) can be quite complex. To tackle this
challenge, the genetic algorithm is employed. This genetic algorithm is utilized for optimizing
objectives, whether they involve constraints or not.

The rationale behind opting for a genetic algorithm lies in its suitability for addressing
challenging optimization problems that don't align well with conventional optimization
algorithms. These problematic scenarios encompass cases where the objective function is
characterized by traits such as discontinuity, non-differentiability, stochasticity, high
nonlinearity, and mixed-integer programming.
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Figure 10. The interface of Mat Lab optimization toolbox

The MatLab optimization toolbox is used in implementing the genetic algorithm in this study,
see the interface given in Figure 10. In the optimization, each of the variables were constrained
within its lower and upper bounds and the calculated optimal is 0.191498 mm/year occurring at
mean pH of 8.446, mean temperature = 23.692°C, mean pressure = 15.725 bar and mean
aqueous CO> partial pressure = 2.022 bar. The optimal is attained after 98 iterations.
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Figure 11. The progression of the adaptive optimization process

Figure 11 illustrations the progression of the adaptive optimization process showing how the
minimum was attained.

The architecture of artificial neural networks is also optimized sometimes to create the best
input-output relationship. The architectural parameter of interest here is the number of neurons in
the hidden layer, called ANN size here, since the model used here is based on a single-layer
multi-perceptron architecture. Because of the iterative formulation of ANN model, analytical
optimization is usually not possible.
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This optimal network size is applied to the data and the results are as shown in Figures 13 to 16
and Table 6. By looking at the figures and the goodness of fit indices the relative improvement
can be seen.

-5
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mean square error
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hidden layer number of neurons

Figure 12. Variation of performance of ANN models with size of the hidden layer showing
the optimal

By calculating the mean square error for various artificial neural network (ANN) models with
different quantities of neurons in the hidden layer and visualizing the outcomes as depicted in
Figure 12, we observe that an ANN with 6 neurons in the hidden layer represents the optimal
configuration. Furthermore, it's evident that the optimal ANN size falls within the range of 5 to
13 neurons in the hidden layer. Notably, the choice of 10 neurons in the ANN used falls within
this favorable range.
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Figure 13. The correlation of the predictions with the measured data for the optimal ANN
model
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Figure 16. Error frequency for the optimal model

Figure 16 shows a histogram of error frequencies. It can be seen that, as typical of a good model,
the smaller errors are more frequent.

Table 6. The goodness-of-fit indices of the optimal ANN model

GFI Training Testing
R? 0.9890 0.9292
RMSE 0.0006 0.0015
MBE -0.0000 0.0004
MABE 0.0004 0.0011
MPE 0.0005 0.1330
T 0.9945 0.9737

The goodness-of-fit indices of the optimal ANN model are summarized in Table 6. It can be seen
that the R? is almost unity at 0.9890 and the correlation coefficient is almost unity at 0.9945

4. Conclusions

The critical issue of corrosion in Nigerian oil pipelines was addressed; this study undertook a
comprehensive analysis using data on corrosion rate, pH, temperature, pressure, and agqueous
CO. partial pressure, obtained from an 10C company in the Niger Delta region. The second-
degree polynomial model was developed, incorporating interaction effects among the predictors.
This model significantly improved predictive accuracy, achieving near-unity R-squared values
for both training and testing datasets, highlighting the importance of considering interaction
effects. To validate the developed model, an ANN was employed. Although the ANN
demonstrated slightly higher predictive accuracy, its black-box nature limits interpretability.
Therefore, the second-degree polynomial model, offering greater transparency and
interpretability, was selected for further optimization. The optimization process, conducted using
a GA, identified the optimal conditions for minimizing corrosion rates. By adjusting the
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predictor variables within defined bounds, the algorithm determined the optimal corrosion rate to
be 0.191498 mm/year, occurring at specific values of pH, temperature, pressure, and aqueous
CO. partial pressure.

This study successfully developed and optimized predictive models for corrosion rates in
Nigerian oil pipelines. The second-degree polynomial model, enriched with interaction effects,
proved both accurate and interpretable, while the ANN served as a robust validation tool. The
findings provide critical insights into the factors driving corrosion and offer a reliable basis for
implementing preventive maintenance strategies to mitigate pipeline failures and enhance
operational efficiency.

It can be recommended that to predict corrosion in oil and gas pipelines, employing polynomial
regression models with high-degree polynomials is essential to capture interaction effects
accurately. Through hypothesis testing, the significance of these interactions can be assessed,
allowing for the identification and removal of unnecessary predictors to streamline models and
enhance efficiency.
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