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Abstract: A Cyber-Physical System (CPS) is a hybrid system that uses both digital and physical 

parts. IoT, smart power grids and remote laboratory environments, online medical care, 

intelligent manufacturing, vehicles that are autonomous, the Internet of Things, control systems 

for industries, and many more have all contributed to CPS's explosive expansion over the last 

decade. Malicious attacks have increased dramatically due to the broad usage of Cyber-Physical 

Systems in modern life.  

The increased access to the public internet has greatly increased the vulnerability of critical 

infrastructure, making incidents targeting oil pipelines and electrical power grids more prevalent 

and concerning. An extensive literature overview on recent developments in anomaly detection 

methods for Cyber-Physical System security threat identification is presented in this article. 

Within industrial control networks (ICS), resolving issues related to life safety is given top 

priority. Reading through a few articles allows us to spot trends and gaps in the literature. 

Resource limitations, there is a lack of established methods for communication, and the business 

is highly diverse, which makes it difficult to reach an agreement, and conflicting information 

security priorities between IT and OT networks are some of the significant outstanding issues 

highlighted in the article. Identifying possible answers and/or avenues for future study is done to 

address this. 
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1. Introduction 

The term cyber-physical systems (CPS) refers to those computer systems that interact with the 

physical world to control and monitor the behavior of physical entities, such as robots, drones, 

networks, power plants, water treatment facilities, and similar others [1]. The integration of 

sensor information with computational capabilities over the Internet of Things (IoT) is providing 

new opportunities for improved monitoring, management, and control of such systems. This has 

given rise to much research on many types of such CPS and corresponding analytic methods, 

along with rapid adoption of this new technology by industry [2]. IoT systems are enabling a 

level of physical awareness by the internet that is unparalleled in history [3]. However, the 

ability to control so many physical entities through the internet raises security concerns about the 

ability to prevent and detect electronic intrusions into cyber-physical systems. These electronic 

intrusions could have consequences that are potentially severe and, at times, even life-

threatening [4]. Demonstrating their potential consequences, papers in the medical journals such 

as the Journal of the American Medical Association recently have investigated and reported on 

the effects of hacking into digital medical devices (a class of CPS) [5]. 
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The need for secure control of CPS has long been recognized by the theoretical control 

community. Indeed, the foundational work in control theory area relies on the assumption that 

feedback can be done securely and that attackers cannot manipulate sensor measurements. 

Unfortunately, these assumptions do not always hold [6]. For example, the security threat caused 

by lightly protected civil infrastructure became a concern when the Stuxnet malware 

demonstrated the capability to control those facilities that were air-gapped from all networks 

except for those operated within the infrastructure community. Since then, there has been a 

growing number of cyber attacks and empirical reports on the security behaviors of many types 

of CPS [7]. These reports have made it clear that even traditional superiority-based relationships, 

such as those present in international relations, could be altered by the emergence of capabilities 

guided by cyber. To keep up with this new reality and to continue working toward vibrant and 

resilient electronic business and information, the area of industrial control in engineering is 

evolving from a working truth paradigm that the most technically efficient means of control is 

usually the most costly and secure alternative to emphasize the competence with which FAI 

could identify and hold insights from leading citizens [8], [9]. At the same time, in national 

security activities, early scientific research provides the initial experiment of the competition that 

terror organizations adapt to form the necessary human and technical control. Thus, the need for 

developing secure CPS and responding to crises that have arisen recently.  

2. Fundamentals of Cyber-Physical Systems 

2.1. Cyber-Physical Systems: Technologies and Challenges 

The term cyber-physical systems is being increasingly used to describe systems that integrate 

communications, control, and computational techniques for system identification, design, and 

performance evaluation [10]. The technological advancements spurred by the virtual revolution 

have given us the flexibility to choose from hybrid cyber-physical systems when we design 

control systems. These systems are designed explicitly to exploit the advantages offered by 

networking, offering flexible designs that can be central (fully in software) or hierarchical [11]. 

An exemplary system is the smart grid, which will integrate generation, monitoring, distribution, 

and operating decision-making and may include renewable energy resources and electric 

vehicles. The central research questions that lie at the interface of physical system dynamics, 

cyber structures, and hybrid control systems are those related to designs that guarantee 

predictability, robustness, and, whenever possible, high performance [12]. These questions 

encompass areas such as optimal utilization of resources, efficient communication protocols, 

seamless integration of distributed components, and dynamic adaptability to changing operating 

conditions. Additionally, interdisciplinary collaboration plays a significant role in the 

development and advancement of cyber-physical systems. Researchers from various fields, 

including electrical engineering, computer science, mechanical engineering, and control systems 

engineering, work together to tackle the complex challenges and ensure the overall effectiveness 

and reliability of these systems [11]. Advancements in sensing technologies, data analytics, and 

machine learning have further expanded the capabilities and possibilities of cyber-physical 

systems. By leveraging these technologies, we can enhance system monitoring, fault detection, 

predictive maintenance, and decision-making processes. Furthermore, the integration of artificial 

intelligence and cognitive computing techniques enables cyber-physical systems to learn from 

past experiences, adapt to new situations, and optimize their performance continuously [2]. It is 

crucial to address security and privacy concerns in cyber-physical systems as well. As these 

systems become more interconnected and rely heavily on data exchange, protecting sensitive 

information and ensuring the integrity of the system is paramount. Robust authentication 

mechanisms, secure communication protocols, and encryption techniques are vital for 

safeguarding cyber-physical systems against malicious attacks and unauthorized access. The 

future of cyber-physical systems holds immense potential for transforming various domains, 

including transportation, healthcare, manufacturing, and infrastructure. With continued research 

and development efforts, we can further enhance the performance, efficiency, and reliability of 

these systems, ultimately leading to a more interconnected and intelligent world [13]. 
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2.2. Fundamentals of Cyber-Physical Systems 

All cyber-physical systems are characterized by significant computing and communication 

capabilities to achieve their physical system goals. These systems utilize smart sensor and 

actuator nodes with communication links in order to drive and observe physical processes [2]. 

Combination with networking technology greatly enhances the possibilities of cyber-physical 

systems, as showcased by the exponential growth of mobile computing and the global Internet 

[14]. As the demand for real-time distributed control, infobots, and telematics systems that 

control and inform people increases, there arises a need for more advanced system requirements 

that hardware alone cannot fulfill. Consequently, the research challenges mainly revolve around 

sensing, actuation, and computational technologies that can effectively support such integration 

[15]. The core computational system challenges lie in determining innovative approaches to 

achieve transformation or augmentation of perception or action in physical space using computer 

algorithms, as well as establishing robust networks with low bandwidth and energy consumption. 

Moreover, cyber-physical systems research at the hardware-software interface must also tackle 

dynamic system-level design issues, which are further complicated by constraints in energy and 

bandwidth [16]. This entails providing support for a diverse set of signal processing, 

communication, and control functionalities. Ultimately, addressing these intricate fundamental 

problems serves as the primary focus in the broader field of cyber-physical system research. 

2.3. Security Challenges in Cyber-Physical Systems 

Cyber-physical systems operate in complex, open, and unpredictable environments, and as a 

result, the security of these systems faces a new set of challenges. In this section, we provide a 

comprehensive review of the security challenges in each layer of the design stack including 

hardware security, network security, system software security, middleware security, and 

application security. In addition, We also cover the difficulties associated with ensuring the 

safety of some cyber-physical systems, such as self-driving cars, Industrial Internet of Things, 

smart grids, smart buildings, and flying ad hoc networks. Lastly, the increasing impact of social 

systems in cyber-physical systems calls for research into modeling and securing their impact. For 

each challenge, we provide a brief description and mention potential attack vectors. 

Cyber-physical systems security is faced with new security challenges from both traditional 

computer systems and physical systems. Some of them, like performance and energy-efficient 

components (such as Field-Programmable Gate Arrays (FPGAs) or Graphics Processing Units 

(GPUs)), networked devices and multicore/multiprocessor architectures, I/O virtualization and 

security root of trust, have been well-studied [17]. However, advanced cyber-physical systems 

components bring security challenges difficult to handle. For instance, emerging non-volatile 

memory technology (like ReRAM, STT-MRAM, PCRAM) has various security vulnerabilities 

due to their unique properties [18], [19]. Long-range communication, collaboration, missions, 

and policies of devices have been associated with security issues [20]. The increasing number of 

on-chip cores aggravates the reliance on scaling hardware security primitives, such as processor 

and cache accesses, particularly used for secure encryption and authentication as well as Address 

Space Layout Randomization (ASLR) or key isolation [21]. A significant lack of physical 

security primitives has been observed. The cyber-physical systems must also preserve real-time 

guarantees, for example, delay sensitivity or being vulnerable to side-channel analysis [22]. 

2.3.1. Traditional Security Measures 

With the rapid development of technology, there comes an increase in the ability for acts of 

sabotage against a system to become potentially more harmful. Therefore, the system must be 

both defensible and resilient when experiencing attacks or experiencing other types of faults, 

such as malfunctions of equipment. These types of systems are known as secure systems, which 

can be classified as traditional security measures, cryptographic measures, network layer 

measures, and conversion methods [23], [24].  
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Traditional security measures encompass security measures for critical systems from the physical 

world. Characteristics of these systems are: (i) the actions performed are tangible, (ii) can be 

operated as independent components, (iii) functions and structures are static, (iv) the input and 

output signals are digital [25], [26], [27]. 

The function of traditional measures is the control of functions of system resources. These 

techniques can be used in a variety of layers within the system, such as: (i) periphery sensors 

(usually have simple tasks), (ii) the inner system (have more complex tasks), (iii) interfaces 

between layers. Physical attacks are relatively simple and are a serious threat (such as accelerator 

injections and temperature alteration). Therefore, specific measures must be taken to reduce 

system vulnerability [28] 

3. Cyber-Physical System Anomaly Detection 

Cyber-physical systems (CPS) are the underlying technology of smart cities, smart grids, 

connected vehicles, and industrial control systems [29]. The security of CPS is becoming more 

and more important, as shown by increasing security incidents in recent years. Anomaly 

detection is usually the first step in security [30]. However, the security of CPS is very 

challenging. 

First, compared to traditional computer systems, CPS is more complicated. It consists of both a 

cyber part and a physical part, which makes anomaly detection much more complicated [31]. 

Second, the normal situation in CPS can be more complicated than traditional computer systems. 

The traditional network packets and computing activities are now coupled with temperature, 

speed, position, and many other physical factors [32]. 

Third, attacks on CPS not only include damaging the computer system but also affecting the 

physical process through the computer system [28]. 

Finally, the complexity of the physical process and the requirement of real-time prediction mean 

that the machine learning models used need to be simple [33]. 

In this paper, we thoroughly examine and analyze the most recent and cutting-edge research that 

effectively combines the immense capabilities of machine learning with the field of 

cybersecurity, particularly when it comes to ensuring the security of cyber physical systems 

(CPS) on a practical and applicable scale. Our comprehensive review incorporates the latest 

overview work, carefully excluding studies that necessitate unrestricted access to data and fall 

outside the realm of computer science, especially in relation to Common Off The Shelf (COTS) 

firmware and the establishment of non-generalized trust boundaries. It is of utmost significance 

that our findings and insights are applicable to a diverse range of cyber physical systems, 

contributing to the advancement of CPS security. Figure (1) shows the types of anomalies in 

cyber-physical systems. 
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3.1. Machine Learning Techniques 

With the speed of hardware development and the increase in training data volume, machine 

learning (ML), especially deep learning (DL), now represents the cutting edge of anomaly 

detection. Another reason for the increased interest is the ability to abstract complex structures, 

which is essential to process high-dimensional sensor data [34]. One typical characteristic of 

ML-based AD is unsupervised learning, where model training does not require any labeled 

normal or abnormal data. When model training is finished, the model should be able to tell the 

difference between a normal and abnormal sample. This feature could automate model training 

without massive human effort as long as the AD model performs well [35]. 

Many ML techniques for AD are based on clustering algorithms, where K-means based 

algorithms like K-means and Fuzzy C-Means are used to divide the data set into K predefined 

clusters. During the model training phase, an auto-encoder based algorithm learns the manifold 

of the data set [36]. While the AD algorithm is effectively trained in an unsupervised way, it still 

suffers from huge human efforts. To remove the annotation burden, semi-supervised learning-

based models, including long-short term memory (LSTM) based recurrent neural networks, 

sequence to sequence auto-encoder, and convolutional neural network (CNN)-based encoder and 

LSTM based decoder have been tried for the AD [37]. The unsupervised AD does not need to 

pre-train the deep neural networks. Different from the label unavailability in unsupervised AD, 

the goal of supervised AD is to classify normal or abnormalities after learning. Semi-supervised 

AD is a compromise, where the labeled data set has only a small fraction of the whole collection 

[38]. To effectively model the relationship among a bunch of sensors for sequential data, hybrid 

ML-based methods by combining symbolic query and model-based learning and LSTM with 

convolutional networks have been proposed for the construction of a multi-resolution spatio-

temporal correlation [39]. The output of RNN networks is a latent distribution that encodes the 

data. A novel use regime for the variational autoencoder (VAE) assuming the conditional 

probability distribution of latent variables and the input data happens to satisfy the Gaussian 

distribution has also been studied [40]. The sudden change in the distribution properties could 

signal the existence of anomalies. Many other methods, for example, a neural network structured 

on a graph for semi-supervised classification and graph-based unsupervised anomaly detection, 

combining support vector machines with directed compounds, deep unsupervised learning for 
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the unsupervised anomaly detection and feature importance guided data association have been 

proposed.  

5. literature Analysis 

Through the integration of computing and communication into physical processes, cyber-

physical systems become useful tools for monitoring and controlling physical systems. [1]. 

However, resource-constrained cyber-physical systems and complex, environmentally varying 

working conditions make the control of and response to cyber-physical operations more difficult 

[41]. Traditional security methods can no longer fully meet the various threats to the security of 

cyber-physical systems. Anomaly detection methods, still, play an important role in the big 

families of security solutions for cyber-physical systems [42]. In this paper, we aim to provide a 

comprehensive analysis of how machine learning methods have been incorporated into anomaly 

detection in cyber-physical systems. Our study encompasses a wide range of disciplines, 

including machine learning, physical sciences, and various industries. By examining existing 

research and conducting experiments, we contribute to the current understanding of anomaly 

detection in cyber-physical systems. Furthermore, our survey focuses on the adaptivity of 

machine learning algorithms to complex and dynamic environments, ensuring their efficacy in 

real-world scenarios. We thoroughly investigate machine learning-based anomaly detection by 

analyzing diverse datasets with distinct characteristics, allowing us to establish quantitative and 

qualitative comparisons with benchmark datasets. Through our research, Our goal is to help 

improve cyber-physical system anomaly detection methods, addressing the ever-evolving 

challenges posed by the interplay between computation, communication, and physical processes. 

This paper thoroughly investigates machine learning-based methods that can effectively integrate 

physical engineering concepts into small groups, thereby fostering innovation and advancement 

in this domain. To achieve this goal, benchmark datasets, meticulously chosen to represent the 

vast array of data collected from various computer systems pertaining to physical layer subjects, 

are employed [43], [44]. These heterogeneous benchmark datasets serve as a protective shield, 

enabling the presentation of multiple solutions based on the powerful radial basis function 

network approach applied to extensive multi-class physical industrial system datasets [45]. 

Moreover, a comprehensive performance experiment is meticulously conducted to examine the 

impact of feature dimension reduction on the system, utilizing the remarkable RBF convolution-

based neural networks as classifiers [46], [47]. This experiment provides valuable insights and 

sheds light on the significance of feature dimension reduction in enhancing the overall 

performance and efficiency of the system. 

The contributions presented in this paper are truly significant and add substantial value to the 

existing knowledge in this field. Firstly, a systematic literature survey is conducted, examining 

existing datasets and machine learning classifier methods specifically tailored for addressing 

physical conditions. This survey not only provides a comprehensive overview but also identifies 

gaps and opportunities for future research. Secondly, a novel and innovative implementation of 

feature dimension reduction for cyber-physical datasets is introduced, leveraging the powerful 

capabilities of RBF-CNNs. This implementation not only offers enhanced efficiency and 

accuracy but also adds a new dimension to the field of feature dimension reduction in cyber-

physical systems. 

Overall, this research paper serves as a comprehensive and essential resource for researchers, 

practitioners, and professionals working in the field of physical engineering, machine learning, 

and cyber-physical systems. The insights, methodologies, and findings presented in this paper 

lay a solid foundation for further advancements and discoveries, ultimately driving innovation 

and progress in this exciting and rapidly evolving field. 
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5.1. using IDS/IPS for Anomaly Detection 

Intrusion Detection System (IDS) may be one of the most popular techniques for CPSoS 

anomaly detection [48]. It is widely deployed in various types of systems including e-commerce 

and telecommunication. Granville and Oliveira (2005) surveyed the various types of IDS [49], 

[50]. The Application IDS and Host IDS (HIDS) operate on individual servers. They collect 

information based on the complete list of system (or application) operations done periodically. 

This list of use of a system or application is made by listening all kernel calls triggered [51]. The 

External IDS (HIDS) works like the HIDS except that it listens to a network kernel call. The 

HIDS/external IDS enter in action only when something odd is occurring: unauthorized access 

which leads to a modification of the user list, sensor that had not to send an alert, messages that 

are attacks, etc [52], [53]. BaseStation, a system for monitoring wireless networks, uses a radio 

telescope approach wherein it listens to the entire band by receiving packets from the entire 

network. Each addressed packet is observed and is sent to the MIPS accelerator, where side-

channel observations are compared to the model-based expectations. Packages found to be 

outliers are penalized and transmitted to the central server while the other packets are shuffled to 

the next simulation step [54]. 

The main problem of the IDS is its need to have static knowledge instead of learning [55]. An 

Intrusion Prevention System (IPS) signature is updated on an event basis, but for an IDS, the 

signature files must be downloaded and updated at regular intervals. The signature must be then 

installed on the routers or server, which may disrupt the CPSoS operation [56]. The activity of 

the IDS can also be the footprint of the use of an anomaly. But in the CPSoS, the update will be 

done on the fly during the execution of the model of the CPSoS adaptation, even when there is 

no anomaly [57]. Moreover, the knowledge of the IDS is specific to a technology, this 

technology being possibly very different between components of the CPSoS [58]. 

To compare the suggested method with similar approaches discovered in the literature, Table 1 

provides a summarised summary of the key aspects. These characteristics are associated with (1) 

Method-implementation method of security;(2) Dataset-the dataset used with this algorithm;(3) 

Advantages & disadvantages of this model;(4) Contributions-the researcher's contributions in 

this article; and (5) Research Gap. 

Sheng et.al. [59] provide a broader model that, by analyzing occurrences and patterns of node 

activity, may characterize the network in connection to both the natural environment and CPS 

processes. Anomaly events are defined as any behaviour that deviates from this model. Although 

existing intrusion detection systems (IDS) can spot suspicious activity, they are unable to 

provide any useful information on the total danger or its effects on the CPS. The proposed 

method worked well on publicly available datasets; however, when implemented in production 

systems, it generates many false positives. 

Ravikumar et. al. [60] Within federated CPS settings, like networked smart electricity grids, 

build on Rakas's work by proposing a decentralized intrusion detection system (IDS). In order to 

gather information on network flows, this proposed distributed intrusion detection system 

mirrors the ports on Ethernet switches, and combine it in a centralised or cloud-based IDS 

environment. Its purpose is to enhance awareness of the situation of activities in a dispersed 

and/or loosely coupled CPS. Dynamically developing intrusion detection system (IDS) rules 

based on activity throughout a distributed or weakly linked IDS, such as a smart power grid, 

enables more robust safeguarding against cascade failures and quicker anomaly detection. 

Despite its impressive results on test datasets, it still needs more development to tackle the vastly 

more unpredictable real thing. 

S. Seng et al. [61] focus on the large gap among academics with businesses in industrial network 

intrusion detection and prevention system design and operation. Attack detection in IT and OT 

networks has traditionally used signature-based methodologies. A database of hazardous patterns 

is used to identify malicious communications. An early and popular intrusion detection method 
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is signature-based IDS. The signature database must be updated often since it misses new or 

zero-day attacks but detects old ones. Contrarily, anomaly-based detection uses AI and ML to 

model typical behavior and classify any variation as abnormal and harmful. Predetermined 

parameters for usual behavior are a basic anomaly-based detection method. The constraints of 

information technology networks apply to metrics like memory or processor consumption, while 

operational technology networks apply them to physical environmental parameters like voltage, 

pressure, temperature, etc.  

Signature-based detection methods require regular database updates, but threshold-based 

detection strategies are accurate and require less system operator administrative effort to 

maintain the intrusion detection system. Low administrative requirements and high threat 

accuracy have made this type of intrusion detection system (IDS/IPS) popular in the business.  

Khraisat et. al. [62] expand upon Seng's previous work by organizing existing intrusion 

detection and prevention systems (IDS/IPS) into a taxonomy and analyzing the various artificial 

intelligence (AI) and machine learning (ML) methods discussed in academic publications. The 

article presents a comprehensive analysis of various ML algorithms, outlining their pros and 

cons. The overarching idea is that an ensemble method, which integrates numerous ML 

algorithms, can achieve better results than any one algorithm could on its own. Industry adoption 

has been hindered by this method's increased complexity, which in turn requires extra time and 

skill from the system operator. 

Vasan et. al. [63] Enhance Khraisat's ensemble learning model research to improve IIoT IDS 

and IPS accuracy. For Internet of Things (IoT) devices with limited processing power, a novel 

feature selection method that stacks diverse characteristics may reach 99.98% classification 

accuracy with reasonable computational overheads. Since bad actors are always enhancing their 

adversarial abilities, our ensemble learning method has concentrated on cross-platform malware. 

Internet of Things (IoT) assaults targeting diverse processor architectures have skyrocketed. 

Malware Threats Hunting utilizing Advanced Ensemble-Based Learning (MTHAEL) is a 

recommended ensemble model that trains a strong learner using weak learner algorithms to 

improve its predictions by combining their predictions.  

MTHAEL disassembles IoT executable binary files to create a normal baseline. By studying 

OpCode instructions, which are machine code one step below assembly language, During normal 

functioning, we might be able to determine which operations took place. The interoperability of 

intrusion detection platforms in the vastly diverse IoT business is made possible by this 

incredibly low level of instruction. The main benefit of this technique is that it can use the same 

IDS and IPS across several IoT devices. This allows more users to use the IDS/IPS without 

modification, reducing the system operator's administrative workload. However, disassembling 

all software binaries is tedious and expert-intensive, prohibiting commercial usage outside of 

academia. SaaS is the best option to implement this intrusion detection system. This allows a 

centralized expert to use a federation dataset to swiftly detect known and unknown threats and 

maintain the IDS.  

Abid et al. [64] propose a new approach to distributed intrusion detection systems (IDS) We 

may utilize machine learning to filter out malicious and recasting the challenges as big data, 

legitimate data from several sources, is consolidated in a cloud-based environment. 

Subsequently, we may instruct the dispersed node of the IDS to act upon the data that has been 

evaluated and categorized. The idea behind this approach is to improve the IDS's classification 

accuracy by feeding the ML model more comprehensive data sources than a single network 

viewpoint could supply. The vast diversity in IIoT designs means that this method, although 

helpful in a uniform IIoT setting, is mostly useless outside of a single company. This is in 

contrast to standard enterprise networks that use intrusion detection systems and firewalls; these 

networks are often more monocultural and can make better use of distributed learning models for 

these systems. 
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N Jeffrey et. al [65] to improve CPS safety, a hybrid anomaly detection model was suggested. 

The researcher delves into the topic of how the fast adoption of Industry 4.0 has led to the 

merging of IT and OT networks. Cyber-physical systems (CPS) are now more vulnerable to 

attacks because OT networks, which were once trusted and isolated, have converged with IT 

networks. There are major ramifications for the economy and security from these dangers. To 

effectively detect known threats in IT networks, this approach combines two types of Intrusion 

Detection Systems (IDS): signature-based and threshold-based. (ii)Machine learning (ML) 

techniques, built for OT networks specifically to detect abnormalities based on behavior.  

The goal of the hybrid approach is to improve the accuracy of unknown threat detection using 

behavior-based anomaly detection and to achieve faster detection of known threats. The hybrid 

model may struggle to adapt to new devices, communication protocols, or operational changes 

without major reconfiguration [31], despite the fact that this strategy tries to utilize the 

capabilities of each method. This is in contrast to scalability issues, where the CPS environment 

scales. As an alternative, security teams may find themselves under more operational pressure to 

continually update and fine-tune hybrid models that successfully integrate several detection 

methodologies [66].  

TABLE 1 

N

o 

Author 

&year 
Method Dataset Advantage 

Disadvantag

e 

contribution

s 

Research 

Gap 

48 
Al-Mhiqani 

et.al 2024 
SLR 

 

the research 

provides 

classificatio

ns that help 

the reader 

understand 

different 

types of 

intrusion 

detection 

systems. 

the study 

relied only on 

data found in 

the literature 

only 

Giving a 

classification 

based on 

academic 

research, 

highlighting 

CPS insider 

threat detecti

on methods 

and its 

subsections 

Highlighting 

CPS insider 

detection of 

threat study 

opportunities 

and 

challenges. 

This content 

may help 

readers 

understand 

CPS insider 

risk 

identification 

possibilities. 

 

52 
JM 

Kizza 2024 
ML tech 

CSE-CIC-

IDS2018 

prevent 

unauthorize

d access and 

thus prevent 

system 

breaches 

possibility of 

positive 

results 

contribute to 

finding new 

ways to 

prevent and 

detect 

intrusions in 

maintaining 

network 

security. 

Limitations 

facing 

network 

security in 

current hacks 

53 
Y.shen 

2022 
PKI model 

NSL-

KDD 

&UNSW-

NB15 

combine 

ML&DL 

models, 

improves 

speed and 

new dataset 

may be 

suffering 

from 

inconsistency 

novel dataset 

to address the 

obstacles of 

the older 

dataset 

there is no 

dataset 

inclusive for 

everything 
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accuracy for 

detecting 

cyber 

attacks. 

and this could 

be another 

problem. 

54 

S 

Chakarabor

ty et.al 

2023 

RFI DSA-110 

improve 

detection 

signal 

Data Loss 

framework 

for 

collaborative 

mitigation of 

RFI 

impact on 

Data Quality 

56 

T 

Sommestad 

et.al 2022 

Sonrt-NIDS VRT 

its specific 

identificatio

n for attack 

false positive 

very high rate 

help 

understand 

detection 

capabilities 

for signature-

based NIDS 

determine 

when 

signature-

based attacks 

are well 

detected and 

under what 

circumstance

s they may 

fail. 

57 
R Pinto 

et.al 2022 
A-HIDS 

OPC UA 

network 

data 

security 

enhancemen

t 

the 

requirements 

do not fully 

address for 

example 

knowledge 

security 

state-of-the-

art model 

Edge devices 

based IDS 

within CPPS 

complexities 

of the Edge 

devices and 

difficulties of 

maintenance 

59 
C Sheng 

2021 
CP-SCADA 

not 

detailed 

combine 

network-

level and 

physical-

level 

modeling 

implementati

on very 

complexity 

provides 

novel 

methods for 

risk 

evaluation 

integrating 

the physical 

level and 

network 

level 

63 
D Vasan 

et.al 2020 

MTHAEL 

ARCHITECTU

RE 

IOTcross-

architectur

e dataset 

the area of 

research is 

actively lead 

to novel 

data mining 

&DL 

method 

the time of 

processing is 

very high 

novel 

architecture 

MTHAEL 

Real-time 

malware 

detection 

64 
A Abid et.al 

2022 

AI,Big Data 

techniques 
SWaT 

the accuracy 

is very high 

implementati

on very 

complexity 

novel model 

Applications 

of Real-

World 

66 
N Jeffrey 

et.al 2024 

S-detection 

&Tdetection 

new 

dataset 

universal 

detection 
complexity 

novel hybrid 

detection 

model 

challenging 

of combining 

IT&OT 
 

5.2. using AI/ML to the detection of anomalies 

With the development of deep learning in recent years, AI/ML has been widely applied in 

various disciplines, such as computer vision and natural language [67]. Its application benefits 

the operation of CPSs to some extent [68]. At the same time, cyber-attack technologies become 

more intelligent as well. For example, the state-of-the-art and cutting-edge cyber-attack 

technology includes GAN, transfer learning, and adversarial attack. These advanced technologies 

confound the development of defense capabilities [69], [70]. In contrast with expert knowledge-

based cyber-attack detection, AI/ML-based cyber-attack detection has stronger data-driven 

capabilities, can capture the characteristics of cyber-attack traffic, has advantages in recognizing 

low-level attacks, and saves time and energy in the construction of specialized cyber-attack [71], 

[72]. Cyber-attack defense systems are developed rapidly based on AI/ML. Currently, AI/ML-

based detection methods are generally divided into four categories: (1) classifier model-based, 

(2) unsupervised learning-based, (3) clustering-based, and (4) autoencoder-based [73], [74], [75]. 
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For the purpose of comparison, Table 2 provides a brief summary of the key elements of the 

suggested solution and comparable approaches identified in the literature. These characteristics 

have a connection to: :(1) Method-implementation method of security;(2) Dataset-the dataset 

used with this algorithm;(3) Advantages & disadvantages of this model;(4)Contributions-the 

researcher contributions in this article; and (5) Research Gap. 

Chen et al. [76]build upon existing GAN techniques, with an emphasis on malicious actors 

intentionally changing their payloads slightly to avoid detection by signature-based and 

behavior-based intrusion detection and prevention systems. Malware authors' evasive strategies 

have long been present in IT networks as polymorphic computer viruses, but signature-based 

detection technologies have typically been able to reduce their effects. For training detection 

techniques to identify malicious Internet traffic that has been purposefully blacked out to 

circumvent detection algorithms based on signature, the researcher, expand upon existing 

counter measures by using GAN approaches. This innovative method builds defenses against 

polymorphic attacks by training a machine learning model with a detailed description of all 

possible mutations of a specific harmful payload. The model mimics the techniques used by 

hostile actors.  

Alsaedi et al. [77]One more encouraging ML approach for detecting intrusions is Long Short-

Term Memory (LSTM). To identify harmful activity in CPS settings, the researcher present a 

new framework that trains a machine learning method to identify the predicted behaviour of a 

complex industrial network with several sensors using Deep Neural Networks (DNN). To 

improve prediction accuracy and reduce noise in complex datasetsIn order to capture long-term 

relationships, LSTM is employed as a model for temporal patterns using time-series data 

collected by sensors. Then, to hone in on the most important traits, it is mixed with a novel 

approach to using distinct weighting values. 

Borcherding et al.[78] suggest an innovative approach that distinguishes between linear and 

non-linear ML models. It is believed that a linear paradigm of behaviors is less probable to learn 

feature dependencies, which is the basis of this technique. We may train linear models using 

optimised methods like Logistic Regression (LR) alongwith Support Vector Machine (SVM) by 

analysing statistics, and non-linear models with Neural Networks (NN) and Random Forest (RF) 

(RF). In the same way that ensemble learning combines many ML methods, this method chooses 

the optimal algorithm dynamically based on the dataset's contents. 

Ha et al. [79] To address the problem of human comprehension, we propose an enhancement to 

the current One-Class Based Support Vector Machine (OCSVM) along with Long Short-Term 

Memory (LSTM) algorithms that incorporates XAI into the model. This enhancement will allow 

anomaly detection methods to reach predictive decisions in a human-readable manner. The CPS 

operator may save money on maintenance and utilize the embedded XAI modules to interpret the 

ML predictions, allowing for speedier decision-making that requires human participation. In the 

suggested architecture, data from streaming sensors feeds into an LStM autoencoder, which in 

turn undergoes further processing using OCSVM and is filtered by a XAI model that displays an 

explanation for abnormalities in a human-readable format. While LSTM excels with time-series 

data—which is a good fit for IIoT sensor data—its performance degrades when faced with 

massive datasets. To get over this issue, Ha et al. suggest using OCSVM to stream incoming 

sensor data. OCSVM is designed to quickly identify abnormal or normal data.  

Huong et al. [80] core model known as FedEx. (Federation learning-based Explainable 

Anomaly Detection for the Industrial Control Systems) is fed by low-powered edge devices in an 

effort to improve XAI using federated learning. The current difficulties are approached as Big 

Data problems. In a geographically dispersed IIoT environment, data from less powerful sensor 

nodes is pre-processed on a moderately powerful edge node. After that, For further processing as 

well as model training, data is sent from every dispersed node on the edge to the more powerful 

central host. Thanks to federated learning, which enables remote nodes in a geographically 

dispersed environment to learn about localized zero-day threats, The distributed ICS can quickly 
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detect anomalies in different regions of the world thanks to its two-stage processing. The two-

stage approach, which optimizes the tradeoff between detection speed and accuracy, is made 

possible by strategically placing nodes at the edge that interact with the central federated 

learning system. 

O.A.Ajala [81]The researcher suggests investigating the effectiveness of artificial intelligence 

(AI) and machine learning (ML) in enhancing cybersecurity, specifically focusing on anomaly 

detection, threat prediction, and automated response systems, in other words, Given the growing 

threat landscape, organizations need to develop and implement robust cybersecurity strategies. 

the integration of artificial intelligence (AI)and machine learning (ML) is becoming essential for 

improving threat detection, prediction, and automated response. AL/ML technologies can 

analyze vast datasets to identify patterns and predict potential threats, offering a pragmatic 

approach to enhancing cybersecurity defenses. the study examines successful AL/ML 

applications in cybersecurity, highlighting their benefits and challenges, in contrast, the 

drawbacks in two important points, complexity: AL/ML models require specialized knowledge 

for development and maintenance, posing a challenge for organizations lacking expertise. and 

Data Privacy: the collection and processing of large amounts of data may arise privacy 

concerns[82], [83]. 

Akinola el. al [84]This article explores using advanced AI techniques, including deep learning, 

unsupervised learning, and ensemble learning, to improve anomaly detection and threat 

management in cloud-connected medical systems. Traditional security methods are becoming 

less effective against modern cyberattacks, so AI/ML approaches are proposed to detect and 

mitigate threats more effectively. Techniques like adversarial machine learning and 

reinforcement learning allow systems to adapt to evolving threats, making AI/ML superior to 

traditional methods in identifying anomalies and defending against cyber threats. The integration 

of these techniques into healthcare systems will enhance security, protect patient data, and ensure 

the continuous operation of medical devices, ultimately improving patient safety and trust in 

healthcare services. However, finding several potential drawbacks associated with using AI/ML 

for cybersecurity in the context of the Internet of Medical Things (IoMT), Vulnerability to 

Adversarial Attacks: AI systems can be susceptible to adversarial attacks, where attackers 

manipulate inputs to deceive the AI, leading to incorrect or harmful actions [85]. High 

Implementation Costs: Developing and maintaining AI systems for cybersecurity can be 

expensive, requiring specialized expertise and resources that might not be available to all 

organizations[86]. 

TABLE 2 

No 
Author & 

year 
Method Dataset Advantage Disadvantage contributions 

Research 

Gap 

70 Anita 2024 GAN 

public 

space 

data 

detection of 

zero-day -

attack 

cost very high 

& complexity 

enhancing 

security & 

safety for 

robust 

protection 

lack of app 

in public 

spaces for 

GAN 

71 
Umit et.al 

2024 

anomaly 

detection 

based on 

AI 

PMU 

Data 

enhancing 

efficiency 

&optimization 

complexity 

management 

power system 

implemented 

robust AI 

algorithm 

challenge 

scalability 

73 
MM Saeed 

et.al 2023 
FS tech 

NSL-

KDD & 

KDD Cup 

1999 

enhancing of 

detection 

zero-day 

attack 

time-

consuming 

develop new 

method in 

IDS 

combine AI 

with 6G 

security 

74 
O Akinola 

et.al 2024 
AL/ML 

healthcare 

data 

efficiency 

improving 

increasing 

security risks 

develop ML 

tech to detect 

threats in 

real-time 

identify 

threats in 

real-time in 

connection 

with medical 



92   Journal of Engineering, Mechanics and Architecture                      www. grnjournal.us  

 
 

devices 

76 
J Chen et.al 

2020 
GAN 

ICS 

Dataset 

increased 

strength 

against hostile 

attacks 

overfitting & 

complexity in 

implementation 

focus on 

several types 

of attacks 

developing 

techniques 

that can 

protect 

against 

several 

threats 

77 
A 

Alsaedi2022 

MCC 

&USMD 

framework 

CPS 

Dataset 

Enhancing the 

accuracy and 

reliability 

the framework 

my have 

difficulty 

generalizing 

across different 

CPS 

environments, 

especially 

those with 

different sensor 

configurations 

and data 

characteristics 

new method 

data-driven 

detection 

threats in 

real-time 

83 
GS Nadella 

et.al 2024 

LSTM, 

RNN, 

&MLP 

Historical 

cyber 

attack 

data 

improving of 

intrusion 

detection 

difficult for 

scalability 

combine AI 

in cyber 

security 

analysis 

predictive in 

real-time 

85 
R Fulton 

et.al 2024 

Risk-

Benefit 

method 

from 

several 

studies 

universal 

framework 

management 

complexity 

novel AI R-

Benefit model 

proposed 

new 

framework 

86 
Taylor et.al 

2024 
case study 

from 

several 

studies 

Enhancing the 

trust of a 

customer 

inadequate 

detection of 

sophisticated 

attacks 

perception 

training 

how 

effective is 

AI in 

cybersecurity 
 

6. Conclusion and Future Directions 

This article includes a comprehensive study on employing machine learning-based anomaly 

detection approaches in providing security for CPS. Leveraging the inherent ability of these 

approaches to model the complex relationships of features, an inductive transfer, empirical-based 

knowledge, and demonstrate robustness in the presence of changing, unexpected, networked 

scenarios, an objective lens is provided to facilitate a meaningful comparison considering 

different aspects. Practical and implementation issues are introduced, focusing on the 

applicability of anomaly detection under different types of threats and network 

configurations/traffic and technologies. A detailed experimental survey on performance 

benchmarking is offered to provide an understanding of the trade-offs between different 

approaches, considering their resources and costs. Finally, this survey presents a thorough 

discussion on the potential future research directions, gap areas, challenges, and untapped 

opportunities in the increasing prevalence of using machine learning algorithms in enabling 

robust anomaly-based protection mechanisms in different CPS configurations, from smart cities 

and industrial control systems to the transportation and electrical smart grid networks and 

intelligent interconnected devices and clinical health provider systems. 
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