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Abstract: A Cyber-Physical System (CPS) is a hybrid system that uses both digital and physical
parts. loT, smart power grids and remote laboratory environments, online medical care,
intelligent manufacturing, vehicles that are autonomous, the Internet of Things, control systems
for industries, and many more have all contributed to CPS's explosive expansion over the last
decade. Malicious attacks have increased dramatically due to the broad usage of Cyber-Physical
Systems in modern life.

The increased access to the public internet has greatly increased the vulnerability of critical
infrastructure, making incidents targeting oil pipelines and electrical power grids more prevalent
and concerning. An extensive literature overview on recent developments in anomaly detection
methods for Cyber-Physical System security threat identification is presented in this article.
Within industrial control networks (ICS), resolving issues related to life safety is given top
priority. Reading through a few articles allows us to spot trends and gaps in the literature.
Resource limitations, there is a lack of established methods for communication, and the business
is highly diverse, which makes it difficult to reach an agreement, and conflicting information
security priorities between IT and OT networks are some of the significant outstanding issues
highlighted in the article. Identifying possible answers and/or avenues for future study is done to
address this.
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1. Introduction

The term cyber-physical systems (CPS) refers to those computer systems that interact with the
physical world to control and monitor the behavior of physical entities, such as robots, drones,
networks, power plants, water treatment facilities, and similar others [1]. The integration of
sensor information with computational capabilities over the Internet of Things (loT) is providing
new opportunities for improved monitoring, management, and control of such systems. This has
given rise to much research on many types of such CPS and corresponding analytic methods,
along with rapid adoption of this new technology by industry [2]. 10T systems are enabling a
level of physical awareness by the internet that is unparalleled in history [3]. However, the
ability to control so many physical entities through the internet raises security concerns about the
ability to prevent and detect electronic intrusions into cyber-physical systems. These electronic
intrusions could have consequences that are potentially severe and, at times, even life-
threatening [4]. Demonstrating their potential consequences, papers in the medical journals such
as the Journal of the American Medical Association recently have investigated and reported on
the effects of hacking into digital medical devices (a class of CPS) [5].
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The need for secure control of CPS has long been recognized by the theoretical control
community. Indeed, the foundational work in control theory area relies on the assumption that
feedback can be done securely and that attackers cannot manipulate sensor measurements.
Unfortunately, these assumptions do not always hold [6]. For example, the security threat caused
by lightly protected civil infrastructure became a concern when the Stuxnet malware
demonstrated the capability to control those facilities that were air-gapped from all networks
except for those operated within the infrastructure community. Since then, there has been a
growing number of cyber attacks and empirical reports on the security behaviors of many types
of CPS [7]. These reports have made it clear that even traditional superiority-based relationships,
such as those present in international relations, could be altered by the emergence of capabilities
guided by cyber. To keep up with this new reality and to continue working toward vibrant and
resilient electronic business and information, the area of industrial control in engineering is
evolving from a working truth paradigm that the most technically efficient means of control is
usually the most costly and secure alternative to emphasize the competence with which FAI
could identify and hold insights from leading citizens [8], [9]. At the same time, in national
security activities, early scientific research provides the initial experiment of the competition that
terror organizations adapt to form the necessary human and technical control. Thus, the need for
developing secure CPS and responding to crises that have arisen recently.

2. Fundamentals of Cyber-Physical Systems
2.1. Cyber-Physical Systems: Technologies and Challenges

The term cyber-physical systems is being increasingly used to describe systems that integrate
communications, control, and computational techniques for system identification, design, and
performance evaluation [10]. The technological advancements spurred by the virtual revolution
have given us the flexibility to choose from hybrid cyber-physical systems when we design
control systems. These systems are designed explicitly to exploit the advantages offered by
networking, offering flexible designs that can be central (fully in software) or hierarchical [11].
An exemplary system is the smart grid, which will integrate generation, monitoring, distribution,
and operating decision-making and may include renewable energy resources and electric
vehicles. The central research questions that lie at the interface of physical system dynamics,
cyber structures, and hybrid control systems are those related to designs that guarantee
predictability, robustness, and, whenever possible, high performance [12]. These questions
encompass areas such as optimal utilization of resources, efficient communication protocols,
seamless integration of distributed components, and dynamic adaptability to changing operating
conditions. Additionally, interdisciplinary collaboration plays a significant role in the
development and advancement of cyber-physical systems. Researchers from various fields,
including electrical engineering, computer science, mechanical engineering, and control systems
engineering, work together to tackle the complex challenges and ensure the overall effectiveness
and reliability of these systems [11]. Advancements in sensing technologies, data analytics, and
machine learning have further expanded the capabilities and possibilities of cyber-physical
systems. By leveraging these technologies, we can enhance system monitoring, fault detection,
predictive maintenance, and decision-making processes. Furthermore, the integration of artificial
intelligence and cognitive computing techniques enables cyber-physical systems to learn from
past experiences, adapt to new situations, and optimize their performance continuously [2]. It is
crucial to address security and privacy concerns in cyber-physical systems as well. As these
systems become more interconnected and rely heavily on data exchange, protecting sensitive
information and ensuring the integrity of the system is paramount. Robust authentication
mechanisms, secure communication protocols, and encryption techniques are vital for
safeguarding cyber-physical systems against malicious attacks and unauthorized access. The
future of cyber-physical systems holds immense potential for transforming various domains,
including transportation, healthcare, manufacturing, and infrastructure. With continued research
and development efforts, we can further enhance the performance, efficiency, and reliability of
these systems, ultimately leading to a more interconnected and intelligent world [13].
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2.2. Fundamentals of Cyber-Physical Systems

All cyber-physical systems are characterized by significant computing and communication
capabilities to achieve their physical system goals. These systems utilize smart sensor and
actuator nodes with communication links in order to drive and observe physical processes [2].
Combination with networking technology greatly enhances the possibilities of cyber-physical
systems, as showcased by the exponential growth of mobile computing and the global Internet
[14]. As the demand for real-time distributed control, infobots, and telematics systems that
control and inform people increases, there arises a need for more advanced system requirements
that hardware alone cannot fulfill. Consequently, the research challenges mainly revolve around
sensing, actuation, and computational technologies that can effectively support such integration
[15]. The core computational system challenges lie in determining innovative approaches to
achieve transformation or augmentation of perception or action in physical space using computer
algorithms, as well as establishing robust networks with low bandwidth and energy consumption.
Moreover, cyber-physical systems research at the hardware-software interface must also tackle
dynamic system-level design issues, which are further complicated by constraints in energy and
bandwidth [16]. This entails providing support for a diverse set of signal processing,
communication, and control functionalities. Ultimately, addressing these intricate fundamental
problems serves as the primary focus in the broader field of cyber-physical system research.

2.3. Security Challenges in Cyber-Physical Systems

Cyber-physical systems operate in complex, open, and unpredictable environments, and as a
result, the security of these systems faces a new set of challenges. In this section, we provide a
comprehensive review of the security challenges in each layer of the design stack including
hardware security, network security, system software security, middleware security, and
application security. In addition, We also cover the difficulties associated with ensuring the
safety of some cyber-physical systems, such as self-driving cars, Industrial Internet of Things,
smart grids, smart buildings, and flying ad hoc networks. Lastly, the increasing impact of social
systems in cyber-physical systems calls for research into modeling and securing their impact. For
each challenge, we provide a brief description and mention potential attack vectors.

Cyber-physical systems security is faced with new security challenges from both traditional
computer systems and physical systems. Some of them, like performance and energy-efficient
components (such as Field-Programmable Gate Arrays (FPGASs) or Graphics Processing Units
(GPUs)), networked devices and multicore/multiprocessor architectures, 1/0 virtualization and
security root of trust, have been well-studied [17]. However, advanced cyber-physical systems
components bring security challenges difficult to handle. For instance, emerging non-volatile
memory technology (like ReRAM, STT-MRAM, PCRAM) has various security vulnerabilities
due to their unique properties [18], [19]. Long-range communication, collaboration, missions,
and policies of devices have been associated with security issues [20]. The increasing number of
on-chip cores aggravates the reliance on scaling hardware security primitives, such as processor
and cache accesses, particularly used for secure encryption and authentication as well as Address
Space Layout Randomization (ASLR) or key isolation [21]. A significant lack of physical
security primitives has been observed. The cyber-physical systems must also preserve real-time
guarantees, for example, delay sensitivity or being vulnerable to side-channel analysis [22].

2.3.1. Traditional Security Measures

With the rapid development of technology, there comes an increase in the ability for acts of
sabotage against a system to become potentially more harmful. Therefore, the system must be
both defensible and resilient when experiencing attacks or experiencing other types of faults,
such as malfunctions of equipment. These types of systems are known as secure systems, which
can be classified as traditional security measures, cryptographic measures, network layer
measures, and conversion methods [23], [24].
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Traditional security measures encompass security measures for critical systems from the physical
world. Characteristics of these systems are: (i) the actions performed are tangible, (ii) can be
operated as independent components, (iii) functions and structures are static, (iv) the input and
output signals are digital [25], [26], [27].

The function of traditional measures is the control of functions of system resources. These
techniques can be used in a variety of layers within the system, such as: (i) periphery sensors
(usually have simple tasks), (ii) the inner system (have more complex tasks), (iii) interfaces
between layers. Physical attacks are relatively simple and are a serious threat (such as accelerator
injections and temperature alteration). Therefore, specific measures must be taken to reduce
system vulnerability [28]

3. Cyber-Physical System Anomaly Detection

Cyber-physical systems (CPS) are the underlying technology of smart cities, smart grids,
connected vehicles, and industrial control systems [29]. The security of CPS is becoming more
and more important, as shown by increasing security incidents in recent years. Anomaly
detection is usually the first step in security [30]. However, the security of CPS is very
challenging.

First, compared to traditional computer systems, CPS is more complicated. It consists of both a
cyber part and a physical part, which makes anomaly detection much more complicated [31].

Second, the normal situation in CPS can be more complicated than traditional computer systems.
The traditional network packets and computing activities are now coupled with temperature,
speed, position, and many other physical factors [32].

Third, attacks on CPS not only include damaging the computer system but also affecting the
physical process through the computer system [28].

Finally, the complexity of the physical process and the requirement of real-time prediction mean
that the machine learning models used need to be simple [33].

In this paper, we thoroughly examine and analyze the most recent and cutting-edge research that
effectively combines the immense capabilities of machine learning with the field of
cybersecurity, particularly when it comes to ensuring the security of cyber physical systems
(CPS) on a practical and applicable scale. Our comprehensive review incorporates the latest
overview work, carefully excluding studies that necessitate unrestricted access to data and fall
outside the realm of computer science, especially in relation to Common Off The Shelf (COTS)
firmware and the establishment of non-generalized trust boundaries. It is of utmost significance
that our findings and insights are applicable to a diverse range of cyber physical systems,
contributing to the advancement of CPS security. Figure (1) shows the types of anomalies in
cyber-physical systems.
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With the speed of hardware development and the increase in training data volume, machine
learning (ML), especially deep learning (DL), now represents the cutting edge of anomaly
detection. Another reason for the increased interest is the ability to abstract complex structures,
which is essential to process high-dimensional sensor data [34]. One typical characteristic of
ML-based AD is unsupervised learning, where model training does not require any labeled
normal or abnormal data. When model training is finished, the model should be able to tell the
difference between a normal and abnormal sample. This feature could automate model training
without massive human effort as long as the AD model performs well [35].

Many ML techniques for AD are based on clustering algorithms, where K-means based
algorithms like K-means and Fuzzy C-Means are used to divide the data set into K predefined
clusters. During the model training phase, an auto-encoder based algorithm learns the manifold
of the data set [36]. While the AD algorithm is effectively trained in an unsupervised way, it still
suffers from huge human efforts. To remove the annotation burden, semi-supervised learning-
based models, including long-short term memory (LSTM) based recurrent neural networks,
sequence to sequence auto-encoder, and convolutional neural network (CNN)-based encoder and
LSTM based decoder have been tried for the AD [37]. The unsupervised AD does not need to
pre-train the deep neural networks. Different from the label unavailability in unsupervised AD,
the goal of supervised AD is to classify normal or abnormalities after learning. Semi-supervised
AD is a compromise, where the labeled data set has only a small fraction of the whole collection
[38]. To effectively model the relationship among a bunch of sensors for sequential data, hybrid
ML-based methods by combining symbolic query and model-based learning and LSTM with
convolutional networks have been proposed for the construction of a multi-resolution spatio-
temporal correlation [39]. The output of RNN networks is a latent distribution that encodes the
data. A novel use regime for the variational autoencoder (VAE) assuming the conditional
probability distribution of latent variables and the input data happens to satisfy the Gaussian
distribution has also been studied [40]. The sudden change in the distribution properties could
signal the existence of anomalies. Many other methods, for example, a neural network structured
on a graph for semi-supervised classification and graph-based unsupervised anomaly detection,
combining support vector machines with directed compounds, deep unsupervised learning for
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the unsupervised anomaly detection and feature importance guided data association have been
proposed.

5. literature Analysis

Through the integration of computing and communication into physical processes, cyber-
physical systems become useful tools for monitoring and controlling physical systems. [1].
However, resource-constrained cyber-physical systems and complex, environmentally varying
working conditions make the control of and response to cyber-physical operations more difficult
[41]. Traditional security methods can no longer fully meet the various threats to the security of
cyber-physical systems. Anomaly detection methods, still, play an important role in the big
families of security solutions for cyber-physical systems [42]. In this paper, we aim to provide a
comprehensive analysis of how machine learning methods have been incorporated into anomaly
detection in cyber-physical systems. Our study encompasses a wide range of disciplines,
including machine learning, physical sciences, and various industries. By examining existing
research and conducting experiments, we contribute to the current understanding of anomaly
detection in cyber-physical systems. Furthermore, our survey focuses on the adaptivity of
machine learning algorithms to complex and dynamic environments, ensuring their efficacy in
real-world scenarios. We thoroughly investigate machine learning-based anomaly detection by
analyzing diverse datasets with distinct characteristics, allowing us to establish quantitative and
qualitative comparisons with benchmark datasets. Through our research, Our goal is to help
improve cyber-physical system anomaly detection methods, addressing the ever-evolving
challenges posed by the interplay between computation, communication, and physical processes.

This paper thoroughly investigates machine learning-based methods that can effectively integrate
physical engineering concepts into small groups, thereby fostering innovation and advancement
in this domain. To achieve this goal, benchmark datasets, meticulously chosen to represent the
vast array of data collected from various computer systems pertaining to physical layer subjects,
are employed [43], [44]. These heterogeneous benchmark datasets serve as a protective shield,
enabling the presentation of multiple solutions based on the powerful radial basis function
network approach applied to extensive multi-class physical industrial system datasets [45].

Moreover, a comprehensive performance experiment is meticulously conducted to examine the
impact of feature dimension reduction on the system, utilizing the remarkable RBF convolution-
based neural networks as classifiers [46], [47]. This experiment provides valuable insights and
sheds light on the significance of feature dimension reduction in enhancing the overall
performance and efficiency of the system.

The contributions presented in this paper are truly significant and add substantial value to the
existing knowledge in this field. Firstly, a systematic literature survey is conducted, examining
existing datasets and machine learning classifier methods specifically tailored for addressing
physical conditions. This survey not only provides a comprehensive overview but also identifies
gaps and opportunities for future research. Secondly, a novel and innovative implementation of
feature dimension reduction for cyber-physical datasets is introduced, leveraging the powerful
capabilities of RBF-CNNs. This implementation not only offers enhanced efficiency and
accuracy but also adds a new dimension to the field of feature dimension reduction in cyber-
physical systems.

Overall, this research paper serves as a comprehensive and essential resource for researchers,
practitioners, and professionals working in the field of physical engineering, machine learning,
and cyber-physical systems. The insights, methodologies, and findings presented in this paper
lay a solid foundation for further advancements and discoveries, ultimately driving innovation
and progress in this exciting and rapidly evolving field.
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5.1. using IDS/IPS for Anomaly Detection

Intrusion Detection System (IDS) may be one of the most popular techniques for CPSoS
anomaly detection [48]. It is widely deployed in various types of systems including e-commerce
and telecommunication. Granville and Oliveira (2005) surveyed the various types of IDS [49],
[50]. The Application IDS and Host IDS (HIDS) operate on individual servers. They collect
information based on the complete list of system (or application) operations done periodically.
This list of use of a system or application is made by listening all kernel calls triggered [51]. The
External IDS (HIDS) works like the HIDS except that it listens to a network kernel call. The
HIDS/external IDS enter in action only when something odd is occurring: unauthorized access
which leads to a modification of the user list, sensor that had not to send an alert, messages that
are attacks, etc [52], [53]. BaseStation, a system for monitoring wireless networks, uses a radio
telescope approach wherein it listens to the entire band by receiving packets from the entire
network. Each addressed packet is observed and is sent to the MIPS accelerator, where side-
channel observations are compared to the model-based expectations. Packages found to be
outliers are penalized and transmitted to the central server while the other packets are shuffled to
the next simulation step [54].

The main problem of the IDS is its need to have static knowledge instead of learning [55]. An
Intrusion Prevention System (IPS) signature is updated on an event basis, but for an IDS, the
signature files must be downloaded and updated at regular intervals. The signature must be then
installed on the routers or server, which may disrupt the CPSoS operation [56]. The activity of
the IDS can also be the footprint of the use of an anomaly. But in the CPSoS, the update will be
done on the fly during the execution of the model of the CPSoS adaptation, even when there is
no anomaly [57]. Moreover, the knowledge of the IDS is specific to a technology, this
technology being possibly very different between components of the CPSoS [58].

To compare the suggested method with similar approaches discovered in the literature, Table 1
provides a summarised summary of the key aspects. These characteristics are associated with (1)
Method-implementation method of security;(2) Dataset-the dataset used with this algorithm;(3)
Advantages & disadvantages of this model;(4) Contributions-the researcher's contributions in
this article; and (5) Research Gap.

Sheng et.al. [59] provide a broader model that, by analyzing occurrences and patterns of node
activity, may characterize the network in connection to both the natural environment and CPS
processes. Anomaly events are defined as any behaviour that deviates from this model. Although
existing intrusion detection systems (IDS) can spot suspicious activity, they are unable to
provide any useful information on the total danger or its effects on the CPS. The proposed
method worked well on publicly available datasets; however, when implemented in production
systems, it generates many false positives.

Ravikumar et. al. [60] Within federated CPS settings, like networked smart electricity grids,
build on Rakas's work by proposing a decentralized intrusion detection system (IDS). In order to
gather information on network flows, this proposed distributed intrusion detection system
mirrors the ports on Ethernet switches, and combine it in a centralised or cloud-based IDS
environment. Its purpose is to enhance awareness of the situation of activities in a dispersed
and/or loosely coupled CPS. Dynamically developing intrusion detection system (IDS) rules
based on activity throughout a distributed or weakly linked IDS, such as a smart power grid,
enables more robust safeguarding against cascade failures and quicker anomaly detection.
Despite its impressive results on test datasets, it still needs more development to tackle the vastly
more unpredictable real thing.

S. Seng et al. [61] focus on the large gap among academics with businesses in industrial network
intrusion detection and prevention system design and operation. Attack detection in IT and OT
networks has traditionally used signature-based methodologies. A database of hazardous patterns
is used to identify malicious communications. An early and popular intrusion detection method
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is signature-based IDS. The signature database must be updated often since it misses new or
zero-day attacks but detects old ones. Contrarily, anomaly-based detection uses Al and ML to
model typical behavior and classify any variation as abnormal and harmful. Predetermined
parameters for usual behavior are a basic anomaly-based detection method. The constraints of
information technology networks apply to metrics like memory or processor consumption, while
operational technology networks apply them to physical environmental parameters like voltage,
pressure, temperature, etc.

Signature-based detection methods require regular database updates, but threshold-based
detection strategies are accurate and require less system operator administrative effort to
maintain the intrusion detection system. Low administrative requirements and high threat
accuracy have made this type of intrusion detection system (IDS/IPS) popular in the business.

Khraisat et. al. [62] expand upon Seng's previous work by organizing existing intrusion
detection and prevention systems (IDS/IPS) into a taxonomy and analyzing the various artificial
intelligence (Al) and machine learning (ML) methods discussed in academic publications. The
article presents a comprehensive analysis of various ML algorithms, outlining their pros and
cons. The overarching idea is that an ensemble method, which integrates numerous ML
algorithms, can achieve better results than any one algorithm could on its own. Industry adoption
has been hindered by this method's increased complexity, which in turn requires extra time and
skill from the system operator.

Vasan et. al. [63] Enhance Khraisat's ensemble learning model research to improve 1loT IDS
and IPS accuracy. For Internet of Things (I0T) devices with limited processing power, a novel
feature selection method that stacks diverse characteristics may reach 99.98% classification
accuracy with reasonable computational overheads. Since bad actors are always enhancing their
adversarial abilities, our ensemble learning method has concentrated on cross-platform malware.
Internet of Things (loT) assaults targeting diverse processor architectures have skyrocketed.
Malware Threats Hunting utilizing Advanced Ensemble-Based Learning (MTHAEL) is a
recommended ensemble model that trains a strong learner using weak learner algorithms to
improve its predictions by combining their predictions.

MTHAEL disassembles loT executable binary files to create a normal baseline. By studying
OpCode instructions, which are machine code one step below assembly language, During normal
functioning, we might be able to determine which operations took place. The interoperability of
intrusion detection platforms in the vastly diverse lIoT business is made possible by this
incredibly low level of instruction. The main benefit of this technique is that it can use the same
IDS and IPS across several 10T devices. This allows more users to use the IDS/IPS without
modification, reducing the system operator's administrative workload. However, disassembling
all software binaries is tedious and expert-intensive, prohibiting commercial usage outside of
academia. SaaS is the best option to implement this intrusion detection system. This allows a
centralized expert to use a federation dataset to swiftly detect known and unknown threats and
maintain the IDS.

Abid et al. [64] propose a new approach to distributed intrusion detection systems (IDS) We
may utilize machine learning to filter out malicious and recasting the challenges as big data,
legitimate data from several sources, is consolidated in a cloud-based environment.
Subsequently, we may instruct the dispersed node of the IDS to act upon the data that has been
evaluated and categorized. The idea behind this approach is to improve the IDS's classification
accuracy by feeding the ML model more comprehensive data sources than a single network
viewpoint could supply. The vast diversity in 110T designs means that this method, although
helpful in a uniform IloT setting, is mostly useless outside of a single company. This is in
contrast to standard enterprise networks that use intrusion detection systems and firewalls; these
networks are often more monocultural and can make better use of distributed learning models for
these systems.
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N Jeffrey et. al [65] to improve CPS safety, a hybrid anomaly detection model was suggested.
The researcher delves into the topic of how the fast adoption of Industry 4.0 has led to the
merging of IT and OT networks. Cyber-physical systems (CPS) are now more vulnerable to
attacks because OT networks, which were once trusted and isolated, have converged with IT
networks. There are major ramifications for the economy and security from these dangers. To
effectively detect known threats in IT networks, this approach combines two types of Intrusion
Detection Systems (IDS): signature-based and threshold-based. (ii)Machine learning (ML)
techniques, built for OT networks specifically to detect abnormalities based on behavior.
The goal of the hybrid approach is to improve the accuracy of unknown threat detection using
behavior-based anomaly detection and to achieve faster detection of known threats. The hybrid
model may struggle to adapt to new devices, communication protocols, or operational changes
without major reconfiguration [31], despite the fact that this strategy tries to utilize the
capabilities of each method. This is in contrast to scalability issues, where the CPS environment
scales. As an alternative, security teams may find themselves under more operational pressure to
continually update and fine-tune hybrid models that successfully integrate several detection
methodologies [66].
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5.2. using AI/ML to the detection of anomalies

With the development of deep learning in recent years, AI/ML has been widely applied in
various disciplines, such as computer vision and natural language [67]. Its application benefits
the operation of CPSs to some extent [68]. At the same time, cyber-attack technologies become
more intelligent as well. For example, the state-of-the-art and cutting-edge cyber-attack
technology includes GAN, transfer learning, and adversarial attack. These advanced technologies
confound the development of defense capabilities [69], [70]. In contrast with expert knowledge-
based cyber-attack detection, Al/ML-based cyber-attack detection has stronger data-driven
capabilities, can capture the characteristics of cyber-attack traffic, has advantages in recognizing
low-level attacks, and saves time and energy in the construction of specialized cyber-attack [71],
[72]. Cyber-attack defense systems are developed rapidly based on Al/ML. Currently, AI/ML-
based detection methods are generally divided into four categories: (1) classifier model-based,
(2) unsupervised learning-based, (3) clustering-based, and (4) autoencoder-based [73], [74], [75].
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For the purpose of comparison, Table 2 provides a brief summary of the key elements of the
suggested solution and comparable approaches identified in the literature. These characteristics
have a connection to: :(1) Method-implementation method of security;(2) Dataset-the dataset
used with this algorithm;(3) Advantages & disadvantages of this model;(4)Contributions-the
researcher contributions in this article; and (5) Research Gap.

Chen et al. [76]build upon existing GAN techniques, with an emphasis on malicious actors
intentionally changing their payloads slightly to avoid detection by signature-based and
behavior-based intrusion detection and prevention systems. Malware authors' evasive strategies
have long been present in IT networks as polymorphic computer viruses, but signature-based
detection technologies have typically been able to reduce their effects. For training detection
techniques to identify malicious Internet traffic that has been purposefully blacked out to
circumvent detection algorithms based on signature, the researcher, expand upon existing
counter measures by using GAN approaches. This innovative method builds defenses against
polymorphic attacks by training a machine learning model with a detailed description of all
possible mutations of a specific harmful payload. The model mimics the techniques used by
hostile actors.

Alsaedi et al. [77]One more encouraging ML approach for detecting intrusions is Long Short-
Term Memory (LSTM). To identify harmful activity in CPS settings, the researcher present a
new framework that trains a machine learning method to identify the predicted behaviour of a
complex industrial network with several sensors using Deep Neural Networks (DNN). To
improve prediction accuracy and reduce noise in complex datasetsIn order to capture long-term
relationships, LSTM is employed as a model for temporal patterns using time-series data
collected by sensors. Then, to hone in on the most important traits, it is mixed with a novel
approach to using distinct weighting values.

Borcherding et al.[78] suggest an innovative approach that distinguishes between linear and
non-linear ML models. It is believed that a linear paradigm of behaviors is less probable to learn
feature dependencies, which is the basis of this technique. We may train linear models using
optimised methods like Logistic Regression (LR) alongwith Support Vector Machine (SVM) by
analysing statistics, and non-linear models with Neural Networks (NN) and Random Forest (RF)
(RF). In the same way that ensemble learning combines many ML methods, this method chooses
the optimal algorithm dynamically based on the dataset's contents.

Ha et al. [79] To address the problem of human comprehension, we propose an enhancement to
the current One-Class Based Support Vector Machine (OCSVM) along with Long Short-Term
Memory (LSTM) algorithms that incorporates XAl into the model. This enhancement will allow
anomaly detection methods to reach predictive decisions in a human-readable manner. The CPS
operator may save money on maintenance and utilize the embedded XAI modules to interpret the
ML predictions, allowing for speedier decision-making that requires human participation. In the
suggested architecture, data from streaming sensors feeds into an LStM autoencoder, which in
turn undergoes further processing using OCSVM and is filtered by a XAl model that displays an
explanation for abnormalities in a human-readable format. While LSTM excels with time-series
data—which is a good fit for 1loT sensor data—its performance degrades when faced with
massive datasets. To get over this issue, Ha et al. suggest using OCSVM to stream incoming
sensor data. OCSVM is designed to quickly identify abnormal or normal data.

Huong et al. [80] core model known as FedEx. (Federation learning-based Explainable
Anomaly Detection for the Industrial Control Systems) is fed by low-powered edge devices in an
effort to improve XAl using federated learning. The current difficulties are approached as Big
Data problems. In a geographically dispersed 10T environment, data from less powerful sensor
nodes is pre-processed on a moderately powerful edge node. After that, For further processing as
well as model training, data is sent from every dispersed node on the edge to the more powerful
central host. Thanks to federated learning, which enables remote nodes in a geographically
dispersed environment to learn about localized zero-day threats, The distributed ICS can quickly
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detect anomalies in different regions of the world thanks to its two-stage processing. The two-
stage approach, which optimizes the tradeoff between detection speed and accuracy, is made
possible by strategically placing nodes at the edge that interact with the central federated
learning system.

O.A.Ajala [81]The researcher suggests investigating the effectiveness of artificial intelligence
(Al) and machine learning (ML) in enhancing cybersecurity, specifically focusing on anomaly
detection, threat prediction, and automated response systems, in other words, Given the growing
threat landscape, organizations need to develop and implement robust cybersecurity strategies.
the integration of artificial intelligence (Al)and machine learning (ML) is becoming essential for
improving threat detection, prediction, and automated response. AL/ML technologies can
analyze vast datasets to identify patterns and predict potential threats, offering a pragmatic
approach to enhancing cybersecurity defenses. the study examines successful AL/ML
applications in cybersecurity, highlighting their benefits and challenges, in contrast, the
drawbacks in two important points, complexity: AL/ML models require specialized knowledge
for development and maintenance, posing a challenge for organizations lacking expertise. and
Data Privacy: the collection and processing of large amounts of data may arise privacy
concerns[82], [83].

Akinola el. al [84]This article explores using advanced Al techniques, including deep learning,
unsupervised learning, and ensemble learning, to improve anomaly detection and threat
management in cloud-connected medical systems. Traditional security methods are becoming
less effective against modern cyberattacks, so AI/ML approaches are proposed to detect and
mitigate threats more effectively. Techniques like adversarial machine learning and
reinforcement learning allow systems to adapt to evolving threats, making AI/ML superior to
traditional methods in identifying anomalies and defending against cyber threats. The integration
of these techniques into healthcare systems will enhance security, protect patient data, and ensure
the continuous operation of medical devices, ultimately improving patient safety and trust in
healthcare services. However, finding several potential drawbacks associated with using AlI/ML
for cybersecurity in the context of the Internet of Medical Things (IoMT), Vulnerability to
Adversarial Attacks: Al systems can be susceptible to adversarial attacks, where attackers
manipulate inputs to deceive the Al, leading to incorrect or harmful actions [85]. High
Implementation Costs: Developing and maintaining Al systems for cybersecurity can be
expensive, requiring specialized expertise and resources that might not be available to all
organizations[86].

TABLE 2
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6. Conclusion and Future Directions

This article includes a comprehensive study on employing machine learning-based anomaly
detection approaches in providing security for CPS. Leveraging the inherent ability of these
approaches to model the complex relationships of features, an inductive transfer, empirical-based
knowledge, and demonstrate robustness in the presence of changing, unexpected, networked
scenarios, an objective lens is provided to facilitate a meaningful comparison considering
different aspects. Practical and implementation issues are introduced, focusing on the
applicability of anomaly detection under different types of threats and network
configurations/traffic and technologies. A detailed experimental survey on performance
benchmarking is offered to provide an understanding of the trade-offs between different
approaches, considering their resources and costs. Finally, this survey presents a thorough
discussion on the potential future research directions, gap areas, challenges, and untapped
opportunities in the increasing prevalence of using machine learning algorithms in enabling
robust anomaly-based protection mechanisms in different CPS configurations, from smart cities
and industrial control systems to the transportation and electrical smart grid networks and
intelligent interconnected devices and clinical health provider systems.
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