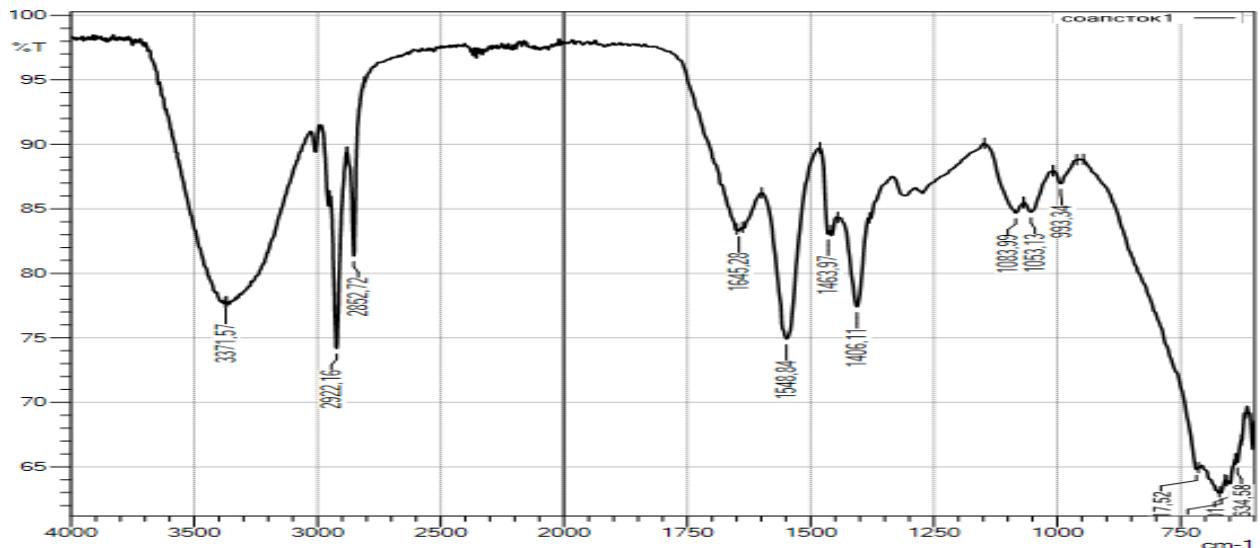



## Study of Ir-Spectra when Processing Recycled Polyethylene

**S. Q. Nurov, U. N. Shabarova, Sh. Kh. Tavashov**  
*Karshi Engineering and Economic Institute*

Currently, one of the most remarkable areas of polymer materials science in the world is the growing interest in the production of secondary materials by recycling polymer waste. The destruction of plastic waste is one of the most pressing problems of our time. Because during the production of all types of plastic products a certain amount of technological waste is generated. In particular, when processing polyethylene (PE), which belongs to the group of polyolefins, and various types of polymer composite materials (PCM), various technological wastes are generated. To correct this deficiency, various chemical additives are added to its composition.

Study of IR-spectra of recycled polyethylene waste In the conducted studies, a mixture of soapstock and dioctyl phthalate in a 1:1 ratio was used as a plasticizer from waste from the local oil industry to plasticize recycled polymer waste. Below are the results of studies conducted to study the IR-spectra of recycled PE waste (Fig. 1).



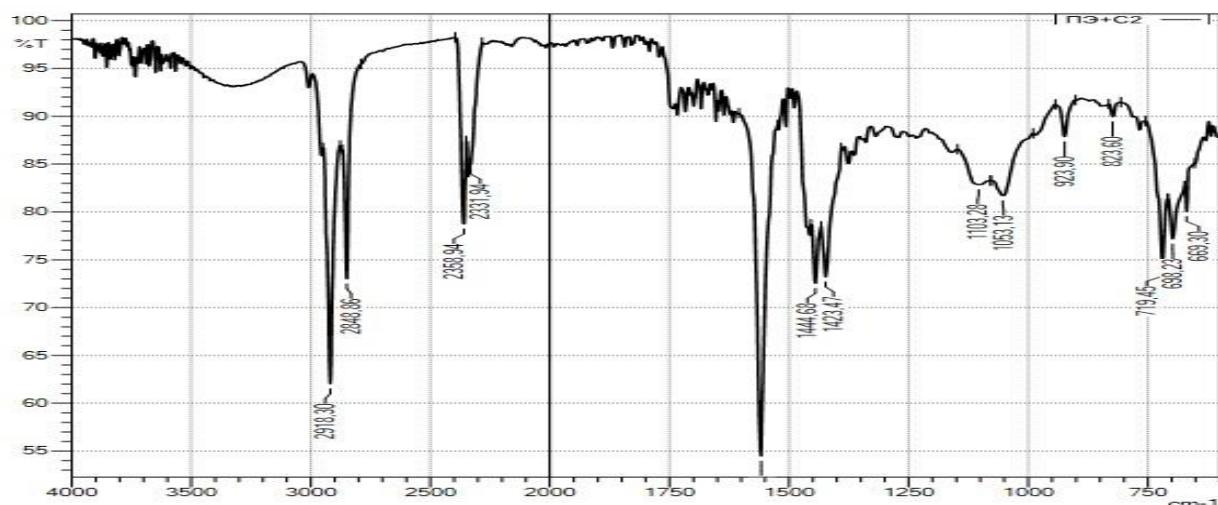

**Fig. 1. IR-spectrum of secondary PE.**

**Table 1. Characteristic frequencies of secondary PE related to important groups of the IR-spectrum.**

| Nature of Vibration                | Frequency, cm <sup>-1</sup> | Intensity |
|------------------------------------|-----------------------------|-----------|
| PE $\nu_{\text{CH}_2}^{\text{as}}$ | 29 3 0.30                   | strong    |
| PE $\nu_{\text{CH}_2}^{\text{s}}$  | 2846.93                     | strong    |
| $\delta_{\text{CH}_2}^{\text{s}}$  | 14 62 , 04                  | average   |
| PE $\gamma_{\text{C-C}}$           | 7 1 9.09                    | weak      |

An infrared spectrum of the soapstock sample shown in Figure 2 was then obtained.




**Fig. 2. IR-spectrum of soapstock**

**Table 2. Characteristic frequencies of soapstock belonging to important groups in the IR-spectrum.**

| Nature of Vibration                                          | Frequency, $\text{sm}^{-1}$ | Intensity        |
|--------------------------------------------------------------|-----------------------------|------------------|
| $\nu_{\text{OH}}$ (connected)                                | 3371.57                     | strong, moderate |
| $\nu_{\text{CH}_2}^{\text{as}}$                              | 2922.16                     | strong           |
| $\nu_{\text{CH}_2}^{\text{s}}$                               | 2852.72                     | strong, moderate |
| $\nu_{\text{C}=\text{C}}$                                    | 1645.28                     | average, weak    |
| $\nu_{\text{C}=\text{C}}$ (double bond in the aromatic ring) | 1548.84                     | average, weak    |
| $\Delta_{\text{CH}}$ (aromatic)                              | 1463.97                     | average, weak    |
| $\delta_{\text{OH}}$                                         | 1406.11                     | average          |
| $\nu_{\text{so}}^{\text{as}}$ (-C-O-H)                       | 1085.99                     | average, weak    |
| $\nu_{\text{so}}^{\text{s}}$ (-C-O-H)                        | 1053.13                     | average, weak    |
| $\delta_{\text{CH}}$ (alkene)                                | 993.34                      | weak             |

An IR-spectrum of soapstock was obtained. In this table, the 2 groups  $\text{CH}_2$ ,  $\text{CH}$ (aromatic),  $\text{CH}$ (alkene),  $\text{C}=\text{C}$ ,  $\text{CO}$ ,  $\text{C}=\text{C}$ (double bond in the aromatic ring),  $\text{OH}$ (linked) and other groups specific to soapstock are asymmetric and symmetrical. The values of valence fluctuations are given.

The infrared spectrum of a sample of soapstock with a mass of 1:0.3 with recycled polyethylene was obtained in Figure 3.



**Figure 3. secondary PE + soapstock (0.3 MB) IR spectrum**

**Table 3. Recycled polyethylene + soapstock (0.3 MB) Characteristic frequencies related to important groups of the IR spectrum.**

| Nature of Vibration                                                    | Frequency, $\text{cm}^{-1}$ | Intensity     |
|------------------------------------------------------------------------|-----------------------------|---------------|
| PE $\nu_{\text{CH}_2}^{\text{as}}$                                     | 2918.30                     | strong        |
| PE $\nu_{\text{CH}_2}^{\text{s}}$                                      | 2848.86                     | strong        |
| soapstock $\nu_{\text{C}=\text{C}}$                                    | 1634.01                     | weak          |
| soapstock $\nu_{\text{C}=\text{C}}$ (double bond in the aromatic ring) | 1551.2                      | weak          |
| PE $\delta_{\text{CH}_2}^{\text{s}}$                                   | 1444.68                     | average       |
| soapstok $\delta_{\text{OH}}$                                          | 1423.47                     | average       |
| soapstok $\nu_{\text{so}}^{\text{as}}$ (-C-O-H) for groups             | 1103.28                     | weak          |
| soapstok $\nu_{\text{so}}^{\text{s}}$ (-C-O-H) for groups              | 1053.13                     | weak          |
| soapstock $\delta_{\text{CH}}$ (alkene)                                | 923.90                      | weak          |
| PE Y $\text{C}-\text{C}$                                               | 823.60                      | weak          |
| soapstock $\delta_{=\text{CH}}$                                        | 698.23                      | average, weak |

In experiment 3, the IR-spectrum of recycled polyethylene + soapstock was obtained at 0.3 mb. When mixing soapstock with secondary PE in a ratio of 1:0.3, the values of asymmetric and symmetric stretching vibrations characteristic of the  $\text{CH}_2$  group in PE ( $\nu_{\text{CH}_2}^{\text{as}}$ ) range from  $2920.30 \text{ cm}^{-1}$  to  $2848.86 \text{ cm}^{-1}$  and symmetric vibrations ( $\nu_{\text{CH}_2}^{\text{s}}$ ) It can be seen that batachrom is shifted from the region of  $2846.93 \text{ cm}^{-1}$  to the region of  $2848.86 \text{ cm}^{-1}$ . Similarly, the specific stretching vibration of the  $\text{C}=\text{C}$  double bond in soapstock ( $\nu_{\text{C}=\text{C}}$ ) is from  $1645.28 \text{ cm}^{-1}$  to  $1634.01 \text{ cm}^{-1}$  and the stretching vibration of the specific double bond of the aromatic ring  $\nu_{\text{C}=\text{C}}$  (aromatic double bond in the ring) completely shifts from  $1548.84 \text{ cm}^{-1}$  to  $1551.2 \text{ cm}^{-1}$ .

Therefore, the stretching vibrations characteristic of the OH group of soapstock ( $\nu_{\text{OH}}$ ) have a strong intensity in the region of  $3371.57 \text{ cm}^{-1}$ , a broad-shaped signal formed by a hydrogen bond, a bathochromic shift indicating the presence of a broad-shaped hydrogen bond with weak intensity at  $3381.67 \text{ cm}^{-1}$  appears through it can be seen that these changes in the macromolecule increase the interaction bonds (dipole-dipole, electrostatic and hydrogen bonds) between the molecules of polyethylene and soapstock raw materials.

Based on the above experimental results, we can conclude that the main reason for improving the physical and mechanical properties of polymer macromolecules during the processing of plasticized (1:0.3 m.b.) secondary polyethylene composite mixtures is the complete mixing of macromolecules filled with polymer and the formation of dipole-dipole, electrostatic, hydrogen bonding and physical effects can be seen by the changes in the peaks in the above spectra. A mixture of recycled polyethylene with soapstock and DOP 1:0.3 mb is the optimal working recipe that can be used for the production and use of various plasticized polymer composite products for technical purposes.

### References:

- Чупрова Л.В., Муллина Э.Р., Мишурина О.А., Ершова О.В. Исследование возможности получения композиционных материалов на основе вторичных полимеров // Современные проблемы науки и образования. - 2014. - № 4.
- Абрамов В.В., Чалая Н.М. Вторичная переработка полимерный отходов: анализ существующих методов. Твердые бытовые отходы, 2012, №1, С.21-24.
- Tavashov Sh.X., Farmanov B.I. Research of the preparation of an absorber based on zinc oxide // International journal of advanced research in science, engineering and technology. - India, 2021. - № 7(52). pp. 18324-18327.
- Tavashov Sh Kh Investigation of the Process of Obtaining Zinc Hydroxide Carbonate by Precipitation From a Solution of Zinc Nitric Acid with a Solution of Sodium Carbonate Central Asian Journal of Theoretical and Applied Science 2023/5/17 4 5 103-106.

5. Шахзод Хужахматович Тавашов, Бехзод Илхомович Фарманов, Абдулла Турсунович Дадаходжаев ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ НИТРАТА ЦИНКА ИЗ ОТРАБОТАННЫХ ЦИНКОВЫХ КАТАЛИЗАТОРОВ Universum: технические науки 2021 10-4 (91) 28-31.
6. Farmanov, B. I., & Tavashov, S. H. (2021). Development of a technology for obtaining strong carriers and nickel catalysts for the primary reforming of natural gas. Universum: Engineering Sciences,(5-5), 17-20.
7. Ilkhomovich, F. B., Khujakhmatovich, T. S., & Sabirovich, I. F. Development of Production of Natural Gas Primary Reforming Catalyst. International Journal on Integrated Education, 3(9), 264-266.
8. Farmanov, B. I., Tavashov, S. K., & Dadakhodzhaev, A. T. (2020). The effect of the amount of the Ca-containing component and the modes of heat treatment of the corundum catalyst support has been studied. Technical and Technological Modernization of Russia: Problems, Priorities, Prospects, 29-31
9. Тавашов, Ш. Х., Мирзакулов, Х. Ч., & Дадаходжаев, А. Т. (2020). Поглотители сернистых соединений из отработанных катализаторов. In Химическая технология и техника (pp. 89-90).
10. Тавашов, Ш. Х., Фарманов, Б. И., & Дадаходжаев, А. Т. (2021). ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ НИТРАТА ЦИНКА ИЗ ОТРАБОТАННЫХ ЦИНКОВЫХ КАТАЛИЗАТОРОВ. Universum: технические науки, (10-4 (91)), 28-31.
11. Farmanov, B., & Tavashov, S. (2023). Processing of the catalyst used in reforming natural gas. In E3S Web of Conferences (Vol. 411, p. 01034). EDP Sciences.
12. Tavashov, S. K. (2024). Some Properties of Polypropylene, a Copolymer of Ethylene and Vinyl Acetate. Web of Semantics: Journal of Interdisciplinary Science, 2(2), 18-22.
13. Kh, T. S., & Sh, L. S. S. S. (2024). Some Considerations about Polymer Nanomaterials. EUROPEAN JOURNAL OF INNOVATION IN NONFORMAL EDUCATION, 4(2), 231-233.
14. Tavashov, S. K. (2024). Modified Antistatic for Some Polymers. Best Journal of Innovation in Science, Research and Development, 3(2), 136-140.
15. Xojaxmatovich, T. S. (2023). Basics of using natural basalt ore in the territory of Uzbekistan as a filler for sewage pipes. Texas Journal of Engineering and Technology, 27, 41-43.
16. Kh., T. S. (2023). Investigation of the Process of Obtaining Zinc Hydroxide Carbonate by Precipitation From a Solution of Zinc Nitric Acid with a Solution of Sodium Carbonate. Central Asian Journal of Theoretical and Applied Science, 4(5), 103-106. <https://doi.org/10.17605/OSF.IO/QM8YU>
17. Ilkhomovich, B. F., & Khujaxmatovich, T. S. (2022). Method of Nickel Extraction from Industrial Waste and its Application in Production. Academia Open, 6, 10-21070.
18. Фарманов, Б. И., & Тавашов, Ш. Х. (2021). РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ПРОЧНЫХ НОСИТЕЛЕЙ И НИКЕЛЕВЫХ КАТАЛИЗАТОРОВ ДЛЯ ПЕРВИЧНОГО РИФОРМИНГА ПРИРОДНОГО ГАЗА. Universum: технические науки, (5-5), 17-20.
19. Farmanov, B. I., Tavashov, S. K., & Dadakhodzhaev, A. T. (2020). The effect of the amount of the Ca-containing component and the modes of heat treatment of the corundum catalyst support has been studied. Technical and Technological Modernization of Russia: Problems, Priorities, Prospects, 29-31.