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Abstract: Video indexing, intelligent surveillance, multimedia understanding, and other 

domains all make extensive use of video action recognition. Lately, it was significantly enhanced 

by adding deep learning through Convolutional Neural Network (CNN) learning. This inspired 

us to examine the noteworthy efforts on action recognition using CNN. This paper presents a 

clear and objective overview of CNN-based action recognition and offers recommendations for 

further research.  
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INTRODUCTION 

Since it is crucial to robotics, human-computer interaction, intelligent surveillance, and other 

fields, the recognition and comprehension of human behaviors and intentions has been a 

significant and well-liked research issue. Many approaches for video action recognition have 

been proposed in the last few decades. Furthermore, a number of action recognition datasets and 

benchmarks have been made public. Since their widespread use in image analysis in 2012, 

convolutional neural networks (CNNs) [1] have significantly improved tasks including object 

detection [2], scene categorization [3], and image classification [4]. The use of CNNs to identify 

actions in videos has gained traction as a result of this success. A thriving research topic centered 

around CNN-based action recognition has resulted from substantial breakthroughs in techniques 

and CNN structures optimized for video. In this area, a plethora of CNN-based methods have 

surfaced, showing impressive performance recently. 

Video action recognition involves two primary objectives, as illustrated in Figure 1 [5]: 

classifying a video into established action classes and determining the temporal occurrence of 

predefined actions within a video. Classification and detection are the popular terms for these 

activities, respectively. 
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Figure 1. Two categories of action recognition task 

Depth video can capture the geometric intricacies of objects and is not impacted by changes in 

lighting, unlike visible (gray or RGB) video. In a similar vein, infrared thermal video is resilient 

to changes in illumination and difficult lighting situations. Furthermore, the use of multi-view 

cameras makes it possible to obtain more thorough data from various angles, which improves 

action detection accuracy. Consequently, action detection using depth [6], infrared [7], and 

multi-view video [8] has attracted a lot of attention. Moreover, activities in multi-view, infrared, 

and depth video have recently been recognized using Convolutional Neural Networks (CNNs). 

It is clear that CNN-based action recognition can analyze not only single-view but also multi-

view movies, as well as depth and infrared videos in addition to visible videos. The detection job 

is intrinsically interwoven with classification, an important and well-studied task. Therefore, the 

task of action classification in single-view viewable videos is the focus of this paper. 

METHODOLOGY 

The Convolutional Neural Network (CNN) is a type of feedforward artificial neural network, 

inspired by biological processes. It comprises an input layer, an output layer, and multiple hidden 

layers, which can be convolutional, pooling, or fully connected. In a convolutional layer, the 

network applies a convolution operation and adds a bias to the input data. The result is passed 

through an activation function before being forwarded to the next layer. The convolution 

operation at a specific position (x, y) in the j-th feature map in the i-th layer is mathematically 

described by Equation (1). 

 𝐶𝑖𝑙
𝑥𝑦

 = φ(𝑏𝑖,𝑗 + ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑚
𝑝,𝑞 𝑣(𝑖−1),𝑚

(𝑥+𝑝),(𝑦+𝑝)𝑄𝑖−1
𝑞=0

𝑃𝑖−1
𝑝=0𝑚 )  (1) 

A weight matrix (w) and a kernel with dimensions P (height) and Q (width) make up the output 

of the convolutional layer, to which the activation function—such as Tanh, Sigmoid, or ReLU—

is applied. Downsampling is done non-linearly by the pooling layer. After these layers, the CNN 

uses fully linked layers—where every neuron is coupled to every activation from the layer before 

it—to do high-level reasoning.  

The original goal of the CNN model LeNet-5 [1], which was developed in 1998, was to identify 

numbers in documents. But until it achieved a breakthrough in image classification [4] in 2012, 

its growth was slow. Significant progress has been made in object detection and picture 

categorization using CNN technology throughout the years. Several CNN architectures have 

been developed, including ZFNet [9], VGG [10], GoogLeNet [11], BN-Inception [12], and 

ResNets [13]. These designs rely on large-scale datasets for training to derive their pre-trained 

models, or weights. To improve the previously learned network models, extra training, or 

transfer learning, is frequently carried out when working with novel small-scale datasets or 

diverse kinds of data. Motivated by CNN’s achievements in image processing, scientists have 

also utilized CNN methods for video action identification. An increasing variety of CNN-based 

techniques for action recognition have demonstrated strong results. CNNs are typically used in 

2D space and are particularly good at extracting spatial features from static images, as shown by 

Equation (1). CNNs have been used in some action recognition research to extract spatial 

information, which is used in conjunction with handmade characteristics like iDT to achieve 

final action recognition. CNNs were initially intended for the extraction of spatial features, not 
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temporal awareness, which makes them less appropriate for movies, which are intrinsically 3D 

spatiotemporal signals. Therefore, using temporal information is the key to expanding CNNs 

from images to movies. We group temporal information-exploitation options into three 

categories: 1) 3D convolution; 2) motion-related data incorporation as CNN input; and 3) fusion. 

These tactics frequently intersect, like in the case of using motion-related data as input for a 3D 

CNN architecture. Based on these approaches, this section will look at CNN-based action 

recognition techniques. 

Using 3D convolution on movies is a straightforward way to leverage spatiotemporal 

information; this strategy has been verified in early CNN-based action recognition research 

conducted before 2012. Convolution in 3D is the process of convolving a video clip using a 3D 

kernel. Equation (2) provides a formal definition of the mathematical operation at point (x, y, z) 

in the j-th feature map in the i-th layer. 

 𝐶𝑖𝑙
𝑥𝑦

 = φ(𝑏𝑖,𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖,𝑗,𝑚
𝑝,𝑞,𝑟𝑣(𝑖−1),𝑚

,(𝑦+𝑝)(𝑧+𝑟)𝑅𝑖−1
𝑟=0

𝑄𝑖−1
𝑞=0

𝑃𝑖−1
𝑝=0𝑚 )  (2) 

The non-linear activation function, ϕ, in this equation can be Tanh, Sigmoid, or ReLU. The 3D 

weight matrix is represented by w, while the kernel's height, width, and temporal length are 

indicated by P, Q, and R, respectively. Figure 2 shows the steps involved in 2D and 3D 

convolution. 

 

Figure 2. Comparison of 2D convolution and 3D convolution 

An important early work on action recognition was presented prior to 2012 by Ji et al. [14], who 

created a 3D CNN architecture with one fixed layer, three convolutional layers, two subsampling 

layers, and one fully connected layer. Gray, gradient, and optical flow channels are created by 

the fixed layer, and each channel is then subjected to subsampling and convolution processes. 

Information from all channels is integrated to generate the final action representation. By 

incorporating predictions from multiple 3D CNN architectures and regularizing outputs with 

high-level features, Ji et al. [15] improved their original 3D CNN model.  

DISCUSSION AND RESULTS 

An overview of CNN-based action recognition techniques based on temporal information 

leveraging strategies was given in this section. It is imperative to employ two-stream techniques 

and 3D CNN in order to efficiently capture spatiotemporal data. Fusion, as used in CNN-based 

action recognition, is a more general term that refers to the process of merging, combining, or 

aggregating various extracted information types in order to take use of spatiotemporal cues. 

Additionally, there are four temporal scales into which the spatiotemporal information that CNN 

retrieved can be divided: apparent (spatial) information, motion information, short-term temporal 

information, and long-term temporal information. CNNs handle short-term temporal information 

on brief video clips, optical flow information on motion, and apparent information on individual 

frames. LSTM can be used to process extracted deep features, long-term temporal 3D 

convolutions can be used for longer video clips, and identity mapping kernels can be integrated 
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as temporal filters to handle long-term deep temporal information. As action recognition 

advances, various benchmarks and datasets have been introduced. Hassner et al. [16] conducted 

a review of these datasets, categorizing them into early datasets collected in laboratory settings, 

such as Weizmann [17]; interim datasets sourced from television footage, like UCF Sports [18]; 

and recent datasets captured in real-world environments, such as UCF101 [19]. In this section, 

we present several recent large-scale action recognition datasets collected from real-world 

scenarios. 

HMDB51 [85]: The videos within HMDB51 were sourced from diverse internet platforms and 

digitized films, showcasing human actions typical of daily life. Challenges in this dataset include 

significant variations in camera angle and movement, cluttered backgrounds, and fluctuations in 

actor positions, scale, and appearances. HMDB51 encompasses 51 distinct action categories, 

each comprising a minimum of 101 clips, totaling 6766 video clips. 

UCF101 [84]: Comprising 13,320 films from 101 action categories on YouTube, UCF101 is an 

expansion of the UCF50 [86] dataset. With notable variances in camera movement, item 

appearance and position, object scale, viewpoint, crowded backdrops, lighting conditions, and 

other aspects, it offers the widest variety of actions. Each action category has twenty-five groups 

of videos, each of which has four to seven videos that each show a different activity. 

Relatively few action recognition studies have been assessed on the Sports-1M dataset due of its 

wide breadth. We provide the results of CNN-based techniques on Sports-1M in Table 1. 

Nonetheless, the most popular benchmarks for assessing modern action detection methods are 

HMDB51 and UCF101. We provide a thorough overview of CNN-based strategies that have 

produced noteworthy effects or outcomes on these two datasets in Table 2. We outline the CNN 

architecture, the recognition accuracy, and the input that each strategy uses. We incorporate the 

findings of iDT-related action recognition [24,25] to compare with the state-of-the-art manual 

approaches. The original studies are the source of the reported accuracy. Furthermore, we have 

highlighted in red the state-of-the-art CNN-based methods. 

Table 1. Recognition results on sports-1M. 

Method Hit@5 (%) CNN architecture Input of the CNN 

SlowFusion 80.1 AlexNet RGB 

LSTM 90.2 GoogleNet RGB 

HumanSkeleton 84.6 GoogleNet RGB 

P3D-ResNet 88.4 P3D-ResNet RGB 

C3D 84.9 C3D RGB 
 

A quick glance at Table 2’s results shows that, whereas action recognition accuracy on UCF101 

surpasses 94%, it remains approximately 70% on HMDB51. Issues including substantial 

viewpoint variance, crowded backgrounds, and shifts in actor placements, scale, and looks are to 

blame for HMDB51's inferior accuracy. This implies that these challenges are too great for the 

action recognition techniques used today. Furthermore, iDT-related techniques outperformed 

earlier CNN-based algorithms. However, recently developed CNN-based approaches have 

demonstrated tremendous improvement and have outperformed iDT-related methods with the 

use of deeper CNN architectures and new technology. 

Method 
UCF101 

mAP(%) 

HMDB51 

mAP(%) 

CNN 

architecture 
Input of the CNN 

TDD 89.7 63.2 ZFNet RGB+OF 

Two-stream 

SVM 
88.2 59.1 CNN-M RGB+OF(RGB) 

HRP 91.4 66.9 VGG-16 RGB 

ActionVLAD 92.6 66.8 VGG-16 RGB+OF(RGB) 

AdaScan 89.2 54.9 VGG-16 RGB+OF(RGB) 
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GRP 91.1 65.4 VGG-16 RGB+OF 

Spatio-

temporal 

LSTM 

83.0 55.2 C3D RGB+OF 

LTC 91.6 64.8 LTC RGB+OF(RGB) 

Res3D 85.8 54.9 Res3D RGB 

ST-

VLMPF(DF) 
93.6 69.5 

VGG-16, VGG-

19, C3D 
RGB+OF 

SSN 94.8 73.8 BN-Inception RGB+OF 

 

CONCLUSION 

The computer science community has recently paid close attention to CNN-based action 

recognition because of its outstanding performance, which outperforms handcrafted 

representation techniques on difficult datasets. As demonstrated in the image domain, the 

capacity to efficiently extract spatial information from 2D space fits in nicely with the intuitive 

understanding of video as a 3D spatiotemporal signal. The main difficulty in using CNNs on 

video is utilizing temporal information. This study offers a thorough overview of methods for 

CNN-based action recognition that take advantage of temporal information. Furthermore, we 

showcase and contrast the outcomes of CNN-based action detection techniques on two difficult 

datasets: HMDB51 and UCF101. In order to further enhance action recognition, we anticipate 

multiple avenues of future study for CNN-based techniques. First off, when it comes to learning 

spatiotemporal characteristics, 3D CNNs outperform 2D CNNs. Consequently, it makes sense to 

convert the potent architectures created for 2D CNNs to 3D CNNs. Although employing optical 

flow as input has improved CNN-based action recognition, its computing needs remain high. 

Therefore, it is crucial to investigate fresh, effective motion-related data for CNN input. 

Furthermore, fusion will remain essential to CNN-based action recognition since it allows 

spatiotemporal information to be used by combining, pooling, or aggregating different kinds of 

extracted data. 
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