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Abstract: Video indexing, intelligent surveillance, multimedia understanding, and other
domains all make extensive use of video action recognition. Lately, it was significantly enhanced
by adding deep learning through Convolutional Neural Network (CNN) learning. This inspired
us to examine the noteworthy efforts on action recognition using CNN. This paper presents a
clear and objective overview of CNN-based action recognition and offers recommendations for
further research.
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INTRODUCTION

Since it is crucial to robotics, human-computer interaction, intelligent surveillance, and other
fields, the recognition and comprehension of human behaviors and intentions has been a
significant and well-liked research issue. Many approaches for video action recognition have
been proposed in the last few decades. Furthermore, a number of action recognition datasets and
benchmarks have been made public. Since their widespread use in image analysis in 2012,
convolutional neural networks (CNNs) [1] have significantly improved tasks including object
detection [2], scene categorization [3], and image classification [4]. The use of CNNSs to identify
actions in videos has gained traction as a result of this success. A thriving research topic centered
around CNN-based action recognition has resulted from substantial breakthroughs in techniques
and CNN structures optimized for video. In this area, a plethora of CNN-based methods have
surfaced, showing impressive performance recently.

Video action recognition involves two primary objectives, as illustrated in Figure 1 [5]:
classifying a video into established action classes and determining the temporal occurrence of
predefined actions within a video. Classification and detection are the popular terms for these
activities, respectively.
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Figure 1. Two categories of action recognition task

Action Classification

A&ioﬁ Detection

Depth video can capture the geometric intricacies of objects and is not impacted by changes in
lighting, unlike visible (gray or RGB) video. In a similar vein, infrared thermal video is resilient
to changes in illumination and difficult lighting situations. Furthermore, the use of multi-view
cameras makes it possible to obtain more thorough data from various angles, which improves
action detection accuracy. Consequently, action detection using depth [6], infrared [7], and
multi-view video [8] has attracted a lot of attention. Moreover, activities in multi-view, infrared,
and depth video have recently been recognized using Convolutional Neural Networks (CNNS).

It is clear that CNN-based action recognition can analyze not only single-view but also multi-
view movies, as well as depth and infrared videos in addition to visible videos. The detection job
iIs intrinsically interwoven with classification, an important and well-studied task. Therefore, the
task of action classification in single-view viewable videos is the focus of this paper.

METHODOLOGY

The Convolutional Neural Network (CNN) is a type of feedforward artificial neural network,
inspired by biological processes. It comprises an input layer, an output layer, and multiple hidden
layers, which can be convolutional, pooling, or fully connected. In a convolutional layer, the
network applies a convolution operation and adds a bias to the input data. The result is passed
through an activation function before being forwarded to the next layer. The convolution
operation at a specific position (X, y) in the j-th feature map in the i-th layer is mathematically
described by Equation (1).
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A weight matrix (w) and a kernel with dimensions P (height) and Q (width) make up the output
of the convolutional layer, to which the activation function—such as Tanh, Sigmoid, or ReLU—
is applied. Downsampling is done non-linearly by the pooling layer. After these layers, the CNN
uses fully linked layers—where every neuron is coupled to every activation from the layer before
it—to do high-level reasoning.

The original goal of the CNN model LeNet-5 [1], which was developed in 1998, was to identify
numbers in documents. But until it achieved a breakthrough in image classification [4] in 2012,
its growth was slow. Significant progress has been made in object detection and picture
categorization using CNN technology throughout the years. Several CNN architectures have
been developed, including ZFNet [9], VGG [10], GoogLeNet [11], BN-Inception [12], and
ResNets [13]. These designs rely on large-scale datasets for training to derive their pre-trained
models, or weights. To improve the previously learned network models, extra training, or
transfer learning, is frequently carried out when working with novel small-scale datasets or
diverse kinds of data. Motivated by CNN’s achievements in image processing, scientists have
also utilized CNN methods for video action identification. An increasing variety of CNN-based
techniques for action recognition have demonstrated strong results. CNNs are typically used in
2D space and are particularly good at extracting spatial features from static images, as shown by
Equation (1). CNNs have been used in some action recognition research to extract spatial
information, which is used in conjunction with handmade characteristics like iDT to achieve
final action recognition. CNNs were initially intended for the extraction of spatial features, not
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temporal awareness, which makes them less appropriate for movies, which are intrinsically 3D
spatiotemporal signals. Therefore, using temporal information is the key to expanding CNNs
from images to movies. We group temporal information-exploitation options into three
categories: 1) 3D convolution; 2) motion-related data incorporation as CNN input; and 3) fusion.
These tactics frequently intersect, like in the case of using motion-related data as input for a 3D
CNN architecture. Based on these approaches, this section will look at CNN-based action
recognition techniques.

Using 3D convolution on movies is a straightforward way to leverage spatiotemporal
information; this strategy has been verified in early CNN-based action recognition research
conducted before 2012. Convolution in 3D is the process of convolving a video clip using a 3D
kernel. Equation (2) provides a formal definition of the mathematical operation at point (X, y, z)
in the j-th feature map in the i-th Iayer.

xy _ (P(blj + Zmzpl . ZQL 1 r . WPqT (y+p)(z+r)) )

i,jm (1 1),m

The non-linear activation function, ¢, in this equation can be Tanh, Sigmoid, or ReLU. The 3D
weight matrix is represented by w, while the kernel's height, width, and temporal length are
indicated by P, Q, and R, respectively. Figure 2 shows the steps involved in 2D and 3D
convolution.
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(a) 2D convolution on an image (b) 2D convolution on multiple channels
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(c) 3D convolution on a volume (d) 3D convolution on multiple channels

Figure 2. Comparison of 2D convolution and 3D convolution

An important early work on action recognition was presented prior to 2012 by Ji et al. [14], who
created a 3D CNN architecture with one fixed layer, three convolutional layers, two subsampling
layers, and one fully connected layer. Gray, gradient, and optical flow channels are created by
the fixed layer, and each channel is then subjected to subsampling and convolution processes.
Information from all channels is integrated to generate the final action representation. By
incorporating predictions from multiple 3D CNN architectures and regularizing outputs with
high-level features, Ji et al. [15] improved their original 3D CNN model.

DISCUSSION AND RESULTS

An overview of CNN-based action recognition techniques based on temporal information
leveraging strategies was given in this section. It is imperative to employ two-stream techniques
and 3D CNN in order to efficiently capture spatiotemporal data. Fusion, as used in CNN-based
action recognition, is a more general term that refers to the process of merging, combining, or
aggregating various extracted information types in order to take use of spatiotemporal cues.
Additionally, there are four temporal scales into which the spatiotemporal information that CNN
retrieved can be divided: apparent (spatial) information, motion information, short-term temporal
information, and long-term temporal information. CNNs handle short-term temporal information
on brief video clips, optical flow information on motion, and apparent information on individual
frames. LSTM can be used to process extracted deep features, long-term temporal 3D
convolutions can be used for longer video clips, and identity mapping kernels can be integrated
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as temporal filters to handle long-term deep temporal information. As action recognition
advances, various benchmarks and datasets have been introduced. Hassner et al. [16] conducted
a review of these datasets, categorizing them into early datasets collected in laboratory settings,
such as Weizmann [17]; interim datasets sourced from television footage, like UCF Sports [18];
and recent datasets captured in real-world environments, such as UCF101 [19]. In this section,
we present several recent large-scale action recognition datasets collected from real-world
scenarios.

HMDB51 [85]: The videos within HMDB51 were sourced from diverse internet platforms and
digitized films, showcasing human actions typical of daily life. Challenges in this dataset include
significant variations in camera angle and movement, cluttered backgrounds, and fluctuations in
actor positions, scale, and appearances. HMDB51 encompasses 51 distinct action categories,
each comprising a minimum of 101 clips, totaling 6766 video clips.

UCF101 [84]: Comprising 13,320 films from 101 action categories on YouTube, UCF101 is an
expansion of the UCF50 [86] dataset. With notable variances in camera movement, item
appearance and position, object scale, viewpoint, crowded backdrops, lighting conditions, and
other aspects, it offers the widest variety of actions. Each action category has twenty-five groups
of videos, each of which has four to seven videos that each show a different activity.

Relatively few action recognition studies have been assessed on the Sports-1M dataset due of its
wide breadth. We provide the results of CNN-based techniques on Sports-1M in Table 1.
Nonetheless, the most popular benchmarks for assessing modern action detection methods are
HMDB51 and UCF101. We provide a thorough overview of CNN-based strategies that have
produced noteworthy effects or outcomes on these two datasets in Table 2. We outline the CNN
architecture, the recognition accuracy, and the input that each strategy uses. We incorporate the
findings of iDT-related action recognition [24,25] to compare with the state-of-the-art manual
approaches. The original studies are the source of the reported accuracy. Furthermore, we have
highlighted in red the state-of-the-art CNN-based methods.

Table 1. Recognition results on sports-1M.

Method Hit@5 (%) CNN architecture Input of the CNN
SlowFusion 80.1 AlexNet RGB
LSTM 90.2 GoogleNet RGB
HumanSkeleton 84.6 GoogleNet RGB
P3D-ResNet 88.4 P3D-ResNet RGB
C3D 84.9 C3D RGB

A quick glance at Table 2’s results shows that, whereas action recognition accuracy on UCF101
surpasses 94%, it remains approximately 70% on HMDBS51. Issues including substantial
viewpoint variance, crowded backgrounds, and shifts in actor placements, scale, and looks are to
blame for HMDB51's inferior accuracy. This implies that these challenges are too great for the
action recognition techniques used today. Furthermore, iDT-related techniques outperformed
earlier CNN-based algorithms. However, recently developed CNN-based approaches have
demonstrated tremendous improvement and have outperformed iDT-related methods with the
use of deeper CNN architectures and new technology.

UCF101 HMDB51 CNN
Method MAP (%) MAP (%) architecture Input of the CNN
TDD 89.7 63.2 ZFNet RGB+OF
Two-sream 88.2 59.1 CNN-M RGB+OF(RGB)
HRP 914 66.9 VGG-16 RGB
ActionVLAD 92.6 66.8 VGG-16 RGB+OF(RGB)
AdaScan 89.2 54.9 VGG-16 RGB+OF(RGB)
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GRP 91.1 65.4 VGG-16 RGB+OF
Spatio-
temporal 83.0 55.2 C3D RGB+OF
LSTM
LTC 91.6 64.8 LTC RGB+OF(RGB)
Res3D 85.8 54.9 Res3D RGB
ST- VGG-16, VGG-
VLMPF(DF) 93.6 69.5 19 C3D RGB+OF
SSN 94.8 73.8 BN-Inception RGB+OF
CONCLUSION

The computer science community has recently paid close attention to CNN-based action
recognition because of its outstanding performance, which outperforms handcrafted
representation techniques on difficult datasets. As demonstrated in the image domain, the
capacity to efficiently extract spatial information from 2D space fits in nicely with the intuitive
understanding of video as a 3D spatiotemporal signal. The main difficulty in using CNNs on
video is utilizing temporal information. This study offers a thorough overview of methods for
CNN-based action recognition that take advantage of temporal information. Furthermore, we
showcase and contrast the outcomes of CNN-based action detection techniques on two difficult
datasets: HMDB51 and UCF101. In order to further enhance action recognition, we anticipate
multiple avenues of future study for CNN-based techniques. First off, when it comes to learning
spatiotemporal characteristics, 3D CNNs outperform 2D CNNs. Consequently, it makes sense to
convert the potent architectures created for 2D CNNs to 3D CNNSs. Although employing optical
flow as input has improved CNN-based action recognition, its computing needs remain high.
Therefore, it is crucial to investigate fresh, effective motion-related data for CNN input.
Furthermore, fusion will remain essential to CNN-based action recognition since it allows
spatiotemporal information to be used by combining, pooling, or aggregating different kinds of
extracted data.
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