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Let's say 0 < p <1so. We are following

D’u(x,t)—a’u_(x,t)= f(x), O<x<l, 0<t<T; (1.1)
of a fractional equation in the Caputo sense
u(x,+0) = ¢(x), 0<x<I,(1.2)
the initial condition and the following
u(0,¢)=0, 0<t<T,(1.3)
u(l,t)=0, 0<t<T,(1.4)

a solution that satisfies the boundary conditions to find the issue let's see , here @(x), f(x)-

the given functions, @ — a constant number , 7' — a fixed number, Dtp through In Caputo's
sense O - an ordered fraction is defined as an ordered derivative.

(1.1)-(1.4)is called a correct problem .
3.1.1 - definition. Ifu(x,r) € C([0,/]x[0,T7]) function the following D/u(x,1),
u,(x,t)e C((O,l) X (O,T) to the property have is , all conditions of (1.1) - (1.4). if
satisfied , then this 2(x,?) to the function (1.1) - (1.4) of the problem the solution is called

By finding a solution to this exact problem in the master 's thesis
, the inverse problem of finding the source function is also studied.
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Let's assume that in problem (1.1) - (1.4) u(x,¢)in addition to the function, f (x)

the function is also unknown . To solve this problem we need an additional condition . We
get the following condition as an additional condition :

u(x,7) =w(x), 0<7<T.(15)
In this problem (1.1) - (1.5).u ()C, t ) and f (x)to the problem of finding functions by finding

the right side of the equation is called an inverse problem .
the right problem
The solution of the correct problem for the partial differential equation of order K is
shown, that is, the solution of the correct problem (1.1) - (1.4) exists and is proved to be
unique.
To solve the problem (1.1) - (1.4), we prove the following theorem.
Theorem 1.1. @(x), f(x) functions continuous , fragmented - continuous to the

derivative have and @(0)=@(/) =0, f(0) = f(/) =0 conditions satisfactory be functions
. _ Then the solution of problem (1.1) - (1.4) will be unique and it will look like this :

0 2
nwna
M(X,I)Z E (DnEp,l —(Tj t?
n=l1

2
+ [, ., —(#j % sin?.(lﬁ)

Proof . Theorem to prove for private derivative equations in solving wide spread out of
methods one o ' variables separation , that is _ From the Fourier method ~ we use (1.1) —
(1.4) problem solution

u(x,t) =v(x,t) + w(x,t)

for a view , here is v(x,#)a function

Dtpv(x,t)—azvxx(x,t)=0, O<x<lI, 0<t<T;1.7)
v(x,+0) = p(x), 0<x<I[,(1.8)
v(0,£) =0, 0<t<T,(1.9)
v(l,1) =0, 0<¢<T.(1.10)

of the problem, W(x,)and the function
D/w(x,t)—a’w,_(x,t) = f(x), O<x<l, 0<t<T;1.11)
w(x,+0)=0, 0<x<I, (1.12)
w(0,¢) =0, 0<t<T, (1.13)
w(l,t) =0, 0<t<T.(1.14)

the solution to the problem.
To solve the problem (1.1) - (1.4), it is enough to solve the above two auxiliary
problems.
As we have seen above, in this part, we will solve the problem (1.1) - (1.4) separately
for two cases, homogeneous and non-homogeneous .
We use the Fourier method to solve the problem (1.7) — (1.10). The solution
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v(x,t)=T() - X(x)=0(1.15)
we look for in the form , where X (x)- xis a function of only a variable, 7'(f) and - is a

function of only 7 a variable.
the solution in the form (1.15) into the equation (1.7) and form the following equation:

T'(O)X(x)=a*T)X"(x)
Then this of equality two side 7'(¢) - X (x) # 0 to being to send as a result ,
'  X'(x)
AT X(x)

we form the equation. For the function of the form (1.16) to be a solution of the equation (1.7) ,

(1.16)

from (1.16) consists of to be need , that is 0 <¢ <T"; manly of variables all in values must

be appropriate . (1.13) is the left side of Eq only 7 to variable , right part only depends on the
variable x . If we x change something value choose ¢ variable if we change (1.16) of
equality right part and vice versa ¢ of the variable something value choose x variable if we
change (1.16), the left part of the equation will be unchanged. This equality holds only if
both sides of the equality are equal to a constant number. Therefore, the following equality
holds:

T _X'(x)_
a’T()  X(x)

here A - is constant, and since there is no requirement for its sign, we take it with a minus sign

(1.17)

for the convenience of further calculations.
(1.17) from the equation X (x) and 7'(¢) from scratch to identify different functions

T'(£) + Aa*T (1) =0(1.18)
X"(x)+AX(x)=0 (1.19)
we come to ordinary differential equations.
(1.9) and ( 1.10 ), we have the following equality.
w0,6)=T(f)- X(0)=0
v(l,0)=T(t)- X(1) =0
we have equalities. Moreover, 7'(¢) for the function since it is a nonzero function X (x)
X0)=X({)=0 (1.20)
It follows that additional conditions are satisfied. Thus, X (x)to define a function, we formulate
a simple eigenvalue problem: A we need to find such values of the parameter as the result
X"(x)+ AX(x)=0
{X(0)=X(l)=0

the problem have a nontrivial solution. A the characteristic value for such values of the

(1.21)

parameter, and the corresponding nontrivial solution is called the characteristic function of
the given problem . This given eigenvalue and eigenfunction problem is also called the
Sturm-Liouville problem. A of the parameter We will consider the negative , zero and
positive cases separately:
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DIf A <0 let it be Then the problem of eigenvalue and eigenfunction given by (1.

21 ) will not have a non-zero solution. We will show it below. The solution X (x) = e Let's

search in the form , then we will have the following equalities
k2eM + 16 =0
K2+ 2=0
k=+J-2

and given of the matter the solution X(x)=cje

V-Ax + ¢ e—\/—ix

in appearance will be Now
using the boundary conditions

X0)=c+c, =0

X()=ce V=AL cHe AL —

we get the system and solve it:

G ==
cle N=AL_ ce =~

[0 va N M _ VA 0 from c;=0 and ¢, =0 that we find So , if A <0 if
(3.1.18) problem X (x) = 0 to the solution have it is
DIf A =0 let it be Then the given eigenvalue and eigenfunction problem (1.21) will

not have a non-zero solution. If 4 =Qindeed _ X"(x)=0 to Eq have we will be , from this
X (x)=cyx + ¢, to the solution we arrive at , if we use the boundary conditions
X(0)=c;-04+¢c,=0
{X(l)zcl d+cy=0
So,if A =0 if, (3.1.21 ) is the problem X (x)=0 to the solution have it is
3)IfA >0 let it be Then the given eigenvalue and eigenfunction problem (1.21) will

= ¢y =0and /#0 from ¢; =0.

have a non-zero solution. If 4 > (indeed if so , the solution X (x) — e in appearance let's

look for , then we will have the following equalities

k2™ £ e =0

2+ A=0
ke =iJA

and ei\/Zx =CoS \/Zx +isin \/Ix that account if we get , it is given of the matter the solution
X(x)=Acos \/Zx + Bsin \/Zx in the form will be According to the boundary conditions

X(0)= Acos(\/I-O)+Bsin(\/I-O): A=0
X()= Acos(lx/z)+Bsin(l\/Z):O
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will be From this X (/) :Bsin(l\/Z) =0 will be , X(x)# Oto be for B#0 to be need _ In

m
that case sin(l\/z) =0 or \/_ = 7, this on the ground because n= 1,2,3,... A and /

2
positive numbers . So , the given problem is non-trivial to the solution A =4, = (%)
special only in values have and it will be as follows

X, (x)=B, sin? (122)
The solution is if we choose an arbitrary constant coefficient as one
X, (x)= sm¢ (123)

will appear.

2
n
Now and , 4, = (T) characteristic to value suitable special function 7, (¢) s for

the following expressions we find :

o0
. Tnx
v(x,t)= Y T (1)-sin——(1.24)
n=l1 !
If we transfer the expression (1.24) to the problem (1.7), the following equality is formed:

o0 [oe] 2
> DT (t)- sin# + azzi%j Tn(t).sing =0.
n=l1 n=l1

From this,

o 2
> Dfﬂ(r)m{%j 1,0 |-sin ™7 =

n=l

we form the equation. So we come to the following issue:
2
n
DPT,(t)+a*| = | T,(t)=0

T, n (+O) =Dy
(3.1.25) The solution of the Cauchy problem is, by virtue of (2.2.14), the following (see
[Kilbas]):

T,() = 9,E,, —(#) t# |.(1.26)

Since the sum of particular solutions is a solution

v(x,t) = iTn(z‘) - X, (1)
n=1

function is also a solution. So (1.7) — (1.10) is a formal solution of the problem
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2
mna

v(x,t):Z(anp’l —(Tj tP sin? (1.27)
n=1

will appear.

Now we show that this series is flat convergent. For this, the partial sum of the series

(1.27).

: 2
J na . TTNX
=St ({22 i
n=l1

we define as
If the Mittag—Leftler function

1
E (—2)|c—
I, (D)l

from the estimate, (1.27) results in smooth convergence of the series.
v_.(x,t) of flat approachability

0° = an\ ana Y . TTnx
@Vﬂx’”:i%(ﬂ Eni (T) Csn

n=1

2 2
(e (=)
[ - [

price and @(x) of the function properties soon come comes out

at

In addition, D/v(x,t)—a’v, (x,£)=0 it follows that the

equality (1.11)

DFv(x,t) e C((0,/)x(0,T)), So, t > 0it follows from the above considerations that the

function (1.27) is a solution to the problem (1.11) - (1.14).
2

0
In addition, D/ Vj(x,t)Za—sz(x,t) it follows that the equality (1.7)
X

DFv(x,t) e C((0,/)x(0,T)), So, t > 0it follows from the above considerations that the

function (1.27) is a solution of the problem (1.7) - (1.10).

Now let's look at the non-homogeneous case. (1.11) — (1.14) and Fourier to solve the

problem method we use , that is w(x,) function

W)= > T, (8)- sin?
n=l1

apparently  we are looking for Him (1.11) to Eq take go let 's put and to simplify the

following equality harvest we do :

DT, () +a’ (%} I, = 1,(x).

initial condition account if we get7 (+0) =0 condition harvest we do So the following
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DPT(r)m( jT(t) £.(0),
T,(+0) =0,

let's get to the point. Solving it, we get the following formal solution (see [Kielbas])

T,()= jn” 'E, ,(~41) 1, (t=m)dn . (1.29)

(1.28)

If f (x) function ¢ Given that does not depend on , then

f n"'E, (=40 ) f,(t=n)dn = f,,fn’HE,,,p (=An" )dn
0

we form the equation. If
t
-1
.[77” E,, (—lnnp)dn =t’E, ., (—/Int”)
0
taking into account the situation, then we obtain the following solution for the problem (3.1.28):

T.(t)=f1"E, [ [@j tp}

Thus, we have the following formal solution to problem (1.11)—(1.14):

. ftE[ (zeY tj”T 130
n=1

Now we show that this series is flat convergent. For this, the partial sum of the series (1.30).

/ na . TNnX
VI/f(xSt):Z;ﬁtpEp,val( ( ] jtpj'SIHT

we define as If the Mittag—Leffler function

1
E (—2)[£—
B2 IS T

from the estimate, (1.30) results in smooth convergence of the series. w_(x,f) of flat

approachability

o= 3 (2] v (2] s
o 2] )
/ p.p+l /

price and f(x) of the function properties soon come comes out

at
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o Y . TTnx :
Moreover, equality (l.ll)Dtij(X,l) - 8_2WJ'(X,1) + ka(l‘)smT, t>0it
X k=1
follows that from So, Dfw(x,r) e C((0,/)x(0,T)) it follows from the above

considerations that the function (1.30) is a solution to the problem (1.11) - (1.14).
Summarizing these solutions, we get the following solution for problem (1.7) - (1.10)

© 2
u(e.) = V(e )+ we) =S 9E, (”Tj o fsin
n=l1

© 2
wna . Tnx
+> ftE, . _(T) t* ‘sin——.(1.31)
n=1

Thus , by the formula (1.6) . determined u(x,¢) function (1.7) - (1.10) will be the

solution of the problem .
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