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Abstract: In recent years, Cyber-Physical Systems (CPS) have seen explosive growth in 

popularity thanks to their many practical uses. Network security and user privacy are key 

concerns while deploying CPS networks because of the high number of internet-connected 

devices in such an ecosystem, which makes them more susceptible to cyber-attacks. An effective 

and efficient Intrusion Detection System (IDS) might be a feasible way to defend CPS networks 

from different threats. This study proposes a new intrusion detection system (IDS) for Cyber-

Physical Systems networks that uses deep learning to detect anomalies. In particular, we have 

introduced a Deep Neural Network (DNN) model for filter-based feature selection that drops 

features with strong correlations.  

In addition, several parameters and hyperparameters are used to fine-tune the model. The 

UNSW-NB15 dataset, which includes four types of attacks, is used for this. To address class 

imbalance concerns in the dataset, the suggested model was trained using Generative Adversarial 

Networks (GANs). It then generated synthetic data of minority assaults and attained a 98% 

accuracy rate with the balanced class dataset.  
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1. INTRODUCTION 

Cyber-Physical Systems (CPS) play an important role in smart grids, healthcare, and various 

industry applications[1]. However, there are several challenges, including the vulnerability of 

protocols and service frameworks used in CPS. Wireless networks with characteristics such as 

low cost, fast deployment, mobility, flexible connection, and service compared to wired 

networks are widely used [2]. However, they are still a popular target for attacks because they 

have weaknesses such as open environments, lack of centralized management, widely available 

attack tools, and not all security mechanisms functioning. Attacks that exploit the vulnerabilities 

of wireless networks can lead to information leakage, connection interference, denial of service, 

and control signal manipulations[3]. Therefore, various studies are being conducted to enhance 

the level of security of wireless networks. However, all existing methods have vulnerabilities, 

and new methods are required for unknown attacks [4]. 

Deep learning-based intrusion detection that shares learning data through accuracy improvement 

with fewer features shows the potential of being a good classifier while ensuring higher 

accuracy[5]. However, prior work using DNN for anomaly-based intrusion detection includes 

various hand-crafted algorithms for preprocessing the raw input data. Given this purpose, we 

propose a deep learning-based anomaly detection scheme. Specifically, we utilize an 

autoencoder-based neural network structure to extract higher abstract features prior to the 
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training process. The training process is conducted through the extracted features to achieve 

better performance than those obtained from conventional hand-crafted preprocessing [6]. It is 

worth noting that the higher abstract features lead to better classification results if the feature 

space is well clustered. The proposed method, as well as the baseline approaches, is evaluated 

using a simulation. Our process ensures higher accuracy in simulated scenarios compared to the 

baseline schemes. 

1.1. Overview of Cyber-Physical Systems (CPS) 

Cyber-physical systems (CPS) are systems that tightly integrate cyber capabilities with physical 

components in smart motion systems and smart control systems[7]. While the first layer of the 

smart motion system includes the mechanical components such as steps, joints, links, etc., the 

second layer includes the physical controllers for motion control, which are the analog and 

digital electronic devices and the actuators, and the third layer comprises the sensory monitoring 

devices in the form of smart sensors and image sensors [8]. The first layer in the smart control 

system has the power management components, including the energy harvesting modules and the 

power storage devices; the second layer houses the physical controllers for stability analysis and 

networked/adaptive control and the sensor signal conditioning, followed by the third layer that 

includes ultrasonic, video, and lightwave communication devices for nearest neighbor and end-

to-end communication [9]. 

There are significant design challenges for preserving the integrity, security, and safety of 

networked cyber-physical layered structures in smart motion systems or control systems [10]. 

Cybersecurity is an increase in complexity and requires that a new layer consisting of security 

monitors and anomaly detectors be added to the physical layer control system, which leads to a 

new concept of cyber-physical security monitoring[11]. 

1.2. Importance of Network Security in CPS 

Cyber-Physical Systems (CPS) are crucially important to the public in the form of transportation, 

communication, energy, and manufacturing. As a result, cyber and physical elements are 

increasingly merging, and an infrastructure that integrates network and systems management and 

security technologies is enabling CPS[1], [12]. In addition, however, the integration of CPS 

makes it easier to interfere with psychological or physical systems by attacking digital systems 

over the network. The act of taking over control decisions inappropriately and altering the actual 

states of physical systems is called network intrusion or attack [13]. A number of network 

intrusions have already occurred that have succeeded in affecting physical systems. As concern 

grows worldwide over the security of CPS, a plethora of research is underway to resolve security 

problems related to CPS [14]. Many of these studies are designed to solve security problems by 

specifically integrating the operating systems or communication technologies that serve as 

components in CPS [15]. The primary method to defend CPS is to prevent cyber-attacks on CPS 

components such as firewalls, intrusion detection systems, and intrusion prevention systems. 

However, since general security technologies cannot completely guarantee the security of CPS, a 

new security method tailored to CPS, called deep learning-based anomaly detection, is needed. 

2. DEEP LEARNING AND NEURAL NETWORKS  

A kind of machine learning known as "deep learning" trains models to learn representations of 

data and one of its cornerstones, neural networks. In general, deep learning uses multiple layers 

to learn higher-level representations that make sense of the data. These methods specialize in one 

kind of representation learning and can be seen as methods of compressing data into multiple 

layers of learned intermediate features[16] [17]. 

Deep learning models consist of neural networks: A core concept of deep learning is neural 

networks. In a numerical representation of a biological brain, numerous artificial neurons are 

connected with each other to mimic the learning process as human neurons do. The input layer 
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receives signals and the output signals diverge into output units where pairs of activation and 

weight form. Activation refers to responders and weight refers to a channel of information [18]. 

In deep learning, neural networks consist of many layers. These layers include an input layer, 

hidden layers, and an output layer, as shown in Figure 1. The layers are used to compute the 

input feature into the next layers. Each layer includes intermediate activations that are generally 

used for computation[19]. 

In a linear system, the output of a layer can be represented mathematically as a linear 

combination of the input. From primitive layer models to advanced layer models, all layer 

models use the same kind of equation [20]. However, the equation is different among 

uncomplicated versus viable systems. 

 

Fig .1 DNN Architecture 

2.1. Introduction to Deep Learning 

As the depth of architectures for neural networks becomes deeper, their abilities also improve. 

Particularly, learning ability and discrimination ability are dramatically enhanced[21]. The 

potential of deep architectures is a subject of much revived interest. Noticeably, deep learning 

reveals its state-of-the-art performance in many complex image problems[16], [22]. Furthermore, 

deep architectures are applied in practical use for search engines and speech recognition. If the 

concepts regarding deep learning are well understood, correctly implementing deep learning 

algorithms is a significant issue. The training duration of deep architectures takes a considerable 

amount of time on conventional resources[23] . An obstacle to attaining state-of-the-art 

performance using deep models is the time-consuming restrictions of the training process. With 

the rapid increase in the architecture size of deep models, deep learning models are designed 

with millions of weights and billions of neurons [24]. Although high performance is achieved 

using large models, the impetus behind this issue stems from both human understanding and 

modern computer technologies[25] . The learning capability becomes remarkable, without 

demonstrating deep human knowledge. Until now, many shallow networks shared parameters or 

only one layer had been adopted[26]. However, the concept of state-of-the-art deep learning is 

merely a good idea. Based on a simple scaling model, the large size of the network contributes to 

high performance as well as a single parameter effect. Proper scaling makes the weights of deep 

architectures converge to reasonable ranges[27] [24]. Even though a large model is properly 

based, the power of deep learning is driven by the computations that an extensive computer 

system requires. The research cannot utilize deep learning to significant effects in other systems 

that do not have resources for recent capabilities. Inexpensive deep learning becomes impractical 

in real life[28]. Thanks to recent massively parallel computation power, enormous energy and 
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time are consumed on extremely expensive cloud computation services. Neural network models 

with their training data require an inordinate amount of resources and time. With the growth of 

devices, the learning capability using their private data is proven with a considerable amount. 

Only large organized companies possess their external computing power outside the computer 

power needed for deep learning. In their own way, abilities for deep learning are reserved [29]. 

2.2. Types of Neural Networks 

There are various types of DNNs that can be utilized to conduct ADE for CPS network security. 

The most commonly used types either consist of feedforward neural networks with fully 

connected layers, while others are derived from this structure by applying different types of 

constraints on the trainable parameters, such as convolutions, recurrent connections, or sparsity 

[30]. FFNNs consist of a stack of layers that are interconnected with each other. Each of the 

interconnected layers is trained to output the true class label that each input image instance 

belongs to, or to determine the discrete values of a given input data set[31], [32] . 

In order to accomplish this, the first layer of the FFNN receives the sensors' raw measurements 

as input. The output of each layer is then computed by applying continuous transformations on 

the input data followed by the use of a fixed nonlinear function. After passing through a number 

of layers, the predictions are made by the final layer [33]. In CNNs, rather than using fully 

connected layers, consecutive layers are partially connected with banks of learnable 

convolutional kernels, which are usually used to identify the presence of specific types of 

features in the input data [34]. RNNs utilize cyclic connections across layers that allow for the 

propagation of previous hidden states, which makes them particularly effective in capturing 

temporal dependencies inherent in naturally occurring sequential data sets such as audio, text, or 

time series[35] . 

3. ANOMALY DETECTION IN CPS 

Anomaly detection plays a critical role in protecting network security in cyber-physical systems 

(CPS), especially for detecting unknown or hidden security threats that are difficult to model[36] 

. However, anomaly detection in CPS is challenging due to the high-dimensional time series and 

spatial-temporal data characteristics. Traditional anomaly detection focuses on feature extraction, 

feature selection, and classifier design, generally using shallow-structured classifiers [37]. This 

paper provides an alternative CPS network security solution using deep learning. 

Cyber-physical systems (CPS) provide the foundational technology for smart cities, smart grids, 

linked automobiles, and industrial control systems[38]. Security incidents have been on the rise 

in recent years, indicating that CPS security is growing in importance. Typically, security 

measures begin with anomaly detection[39]. However, ensuring the security of CPS poses 

significant challenges. 

Firstly, CPS is more intricate than older forms of computer systems. Because of its cyber and 

physical components, anomaly detection is considerably more difficult[40]. 

Secondly, compared to more conventional computer systems, the typical scenario in CPS might 

be trickier. Numerous physical variables, including as temperature, velocity, and location, are 

now connected with the conventional network packets and computational operations[41]. 

Thirdly, cyberattacks on CPS can have an impact on both the physical process and the computer 

system[42]. 

Lastly, the physical process's intricacy and the necessity for real-time prediction necessitate the 

employment of basic machine learning models[43]. 

In this paper, we take a close look at the latest and greatest studies that have successfully 

integrated machine learning with cybersecurity. Specifically, we focus on studies that have 

shown promising results in protecting cyber physical systems (CPS) on a large scale. To ensure 

that our review is thorough and up-to-date, we have excluded studies that do not pertain to 
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computer science and require unfettered data access, such as those involving Common Off-The-

Shelf (COTS) firmware or the creation of non-generalized trust boundaries. The broad 

applicability of our results and insights to many cyber physical systems is crucial, as it will aid in 

the development of CPS security. There are several kinds of anomalies in CPS, as shown in 

Figure (2). 

 

3.1. Traditional Methods vs. Machine Learning Approaches 

3.1.1 Traditional Methods 

Traditional methods have mainly focused on detecting attacks and defending systems against 

them. A common methodology used in many security mechanisms is digital signatures. Intrusion 

detection systems, such as a network intrusion detection system or intrusion protection system, 

can monitor all incoming or outgoing traffic, find any known attack signals, and generate an alert 

to reduce system damage [50][51]. Digital signatures have provided an efficient filtering and 

detection methodology because they cover many characteristics of network communication and 

are easy to compare and interpret [52][53]. However, a security problem occurs when the 

network system cannot receive any existing signatures, or the large increase in signatures is still 

inefficient and can miss many newly implemented attacks [54]. Moreover, most traditional 

security solutions are based on theories of heuristic triggers, rules, or digital signatures, and so 

the security product has a high false-positive rate of application invocation [55]. 

3.1.2. Machine Learning Techniques 

Anomaly detection has advanced to a new level with the advent of fast technology development 

and an explosion in training data volume, thanks to machine learning (ML) and, in particular, 

deep learning (DL). Processing high-dimensional sensor data requires the capacity to abstract 

complicated structures, which is another factor contributing to the heightened interest [44]. 

Unsupervised learning, in which training models does not need any labeled normal or abnormal 

data, is a typical feature of ML-based AD. After all of the training is complete, the model ought 

to be able to distinguish between typical and out-of-the-ordinary samples. Assuming the AD 

model is effective, this feature has the potential to automate model training with minimal human 

intervention[45]. 

The data set is divided into K predetermined clusters using K-means based methods, such as K-

means and Fuzzy C-Means. Many ML strategies for AD are based on clustering algorithms. A 
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data set's manifold is learned using an auto-encoder based technique during the model training 

phase [46]. Despite its successful unsupervised training, the AD algorithm still requires a lot of 

human intervention. Some semi-supervised learning methods have been tested for AD to 

alleviate the annotation load. These models include sequence-to-sequence auto-encoders, 

convolutional neural network (CNN)-based encoders and decoders, and long-short term memory 

(LSTM) based recurrent neural networks [47]. It is not necessary to pre-train the deep neural 

networks for the unsupervised AD. The purpose of supervised AD is to learn to distinguish 

between normal and abnormal data, as opposed to the unavailability of labels in unsupervised 

AD. An intermediate step is semi-supervised AD, in which the labelled data set contains just a 

subset of the total[48]. In order to create a multi-resolution spatio-temporal correlation, it is 

recommended to use hybrid ML-based approaches that combine symbolic query and model-

based learning, as well as LSTM with convolutional networks. This will allow for a more 

accurate modeling of the relationship among a number of sensors for sequential data[49]. 

Random neural network (RNN) networks encode input with a latent distribution as its output. 

Researchers have also looked at a new way to employ the variational autoencoder (VAE) where 

the input data is assumed to have a Gaussian distribution and the latent variables' conditional 

probability distribution[50]. An irregularity may have been detected if the distribution 

characteristics changed suddenly. A plethora of alternative approaches have been put forth, 

including graph-based unsupervised anomaly detection and semi-supervised classification using 

neural networks, deep unsupervised learning for unsupervised anomaly detection using directed 

compounds, feature importance guided data association, and a combination of support vector 

machines and directed compounds. 

4. LITERATURE REVIEW  

One of the most common methods for detecting CPSoS anomalies is the Intrusion Detection 

System (IDS)[51]. Electronic commerce and telecommunications are only two of the many 

systems that make extensive use of it. A comprehensive review of IDS was conducted by 

Granville and Oliveira (2005)[52], [53]. Each server runs its own application and host intrusion 

detection systems (HIDS). Data collection is dependent on their regular execution of the whole 

set of system (or application) actions. Listening to all kernel calls triggered allows one to 

compile this list of system or application uses [54]. The only difference between the HIDS and 

the External IDS (HIDS) is that the latter listens to kernel calls made via the network. When 

something out of the ordinary happens, such as a sensor failing to transmit an alert, a message 

indicating an attack, or unauthorised access resulting in a change to the user list, the 

HIDS/external IDS will activate[55], [56]. A radio telescope technique is used by BaseStation, a 

system for monitoring wireless networks, to listen to the whole band by receiving packets from 

the entire network. We send each addressed packet to the MIPS accelerator for observation, and 

then we compare the side-channel observations to the assumptions based on the models. While 

the remaining packets are reshuffled to go on to the next simulation stage, those packages 

identified as outliers are punished and sent to the central server[57]. 

The requirement for static knowledge rather than learning is the primary issue with the IDS[58]. 

In contrast to intrusion detection systems (IDS), which change their signatures in response to 

specific events, IPS systems require frequent file downloads and updates. The next step is to 

deploy the signature on the servers or routers, which might interfere with the CPSoS 

functionality [59]. The utilization of an anomaly can also be traced by the activity of the IDS. A 

CPSoS adaption model update, however, will occur in real time when the model is being 

executed, regardless of whether an anomaly exists[60]. In addition, the information gathered by 

the IDS is technology-specific, and the CPSoS components may use vastly different technologies 

[61]. 

Amiri et al (2023). An extensive amount of information on the concepts and applications of 

machine learning (ML) techniques in healthcare is provided by this study. it addresses a broad 

variety of common health issues. It carefully considers potential outcomes, including in all the 
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essential steps that must be organized for the future [62] . Several clear challenges exist, 

however, when using ML to personal healthcare. Importantly, supervised learning algorithms are 

trained using diagnostic labels. However, because mental disorders are so varied, these 

classifications may not be accurate enough to train AI systems to be very sensitive and particular. 

Instead of making diagnosis, ML algorithms might be used to predict certain symptoms or 

outcomes. More than that, DNN may be used autonomously to find new biomarkers for 

identifying certain illnesses. Despite the need of transparency and repeatability, protecting 

proprietary information is a major roadblock to ML algorithm implementations. Big data 

requires a lot of prep work before it can be used, and it's also essentially unstructured. 

Furthermore, it is not usual practice to include details about the data's quality and any biases in 

the results of ML algorithms. 

Malika et al. (2023). Using deep reinforcement learning as its foundation, this work introduces 

Anomaly-NIDS. This approach to data gathering and preparation might prove useful in a variety 

of network topologies. This method of reinforcement learning gives you a bunch of choices. The 

model's capacity to accurately identify incoming network traffic is enhanced in the Learning 

mode by continuous learning and updating, while processing speed is optimized in the detection 

mode. The author successfully tested the method on 100 million Palo Alto network logs as part 

of the campus networking environment. In order to evaluate the suggested DRL, three machine-

learning techniques were employed. Proven in experiments, the suggested approach efficiently 

updates models in real time while simultaneously achieving maximum detection accuracy and 

processing speed [63]. However, pre-processing data is lacking[64] . 

Mahdi et al. (2024). The suggested method tracks and updates the estimation of each packet 

using sequential packet labeling in order to get the attack probability score for each flow. The 

CICIDS2017 and CSE-CIC-IDS2018 datasets are used to assess the framework using CNN-

based and LSTM-based deep models. By doing comprehensive experiments and assessments, the 

researcher proves that the proposed distributed system successfully handles traffic concept drift. 

Our results show that convolutional neural network (CNN) models can adjust to traffic idea drift, 

and with just 128 more frames, they achieve identification rates above 95%. On the other hand, 

online intrusion detection systems that use LSTM-based models to classify packets sequentially 

are exceptional at identifying intrusions within 15 packets [65]. 

Singh et al. (2024). Sophisticated Intrusion Prevention System A new method for intrusion 

detection called AID-DRL has just been created, and it uses Deep Reinforcement Learning. The 

proposed system uses deep neural networks and reinforcement learning to build an adaptive 

intrusion detection system (IDS) that can safeguard against evolving cyber threats. Consideration 

of scalability, adaptability, and interaction with cybersecurity infrastructure was given during the 

design and construction of AID-DRL. The experimental results show that the AID-DRL system 

detected and mitigated threats better in real-time than baseline models. Learning algorithms 

should be made more adversary resilient, dynamic policy modification should be a priority of 

future research, as should the integration of threat intelligence, scalability, deployment, and 

privacy preservation. These domains aim to address the dynamic nature of cybersecurity while 

also enhancing intrusion detection systems [66]. 

Jeffrey et al. (2024). supply a method for CPS anomaly detection based on "unsupervised 

learning models" that employ one-class classification algorithms. Because the normally utilized 

studies have an incredibly small quantity of aberrant data, this will assist in making up for it. 

Although it helps with some of the accuracy challenges resulting from data classes that are not 

balanced, this strategy is not highly portable to CPS settings and concentrates on the distinctions 

between supervised and unsupervised learning using a narrow range of classification methods 

[67].  

Afrifa et al. (2023). start with the idea that criminals frequently take over huge numbers of “IoT 

devices”, transforming them into botnets to carry out their nefarious schemes, posing a threat to 

global trade. A single compromised Internet of Things (IoT) device probably wouldn't cause 
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much trouble on its own, but a botnet of hundreds—or perhaps millions—could cause havoc. By 

identifying individual nodes inside a botnet, we offer a novel way to detect botnets and prevent 

incursions in real-time using Ensemble Learning. This innovative approach uses Ensemble 

Learning to identify botnet hosts, as opposed to the conventional approach of deciding whether 

an action against a particular host is harmful or benign [68]. 

Yazdinejad et al. (2023). provide an ensemble deep learning-based anomaly detection approach 

for IIoT settings; this model uses AE architecture and LTSM to review time series data in order 

to spot unusual action. In IIoT/CPS anomaly detection scenarios, imbalanced datasets are 

common and affect the prediction power of several ML algorithms. This study applies pattern 

recognition to time series data collected from "IIoT environment" monitoring in order to 

determine if the activity is normal or abnormal. The premise is that IIoT environments are 

dispersed and filled with diverse sensors and actuators. The goal is to tackle the issue as a big 

data challenge [69]. 

Nicholas et al(2024). For CPS anomaly detection, this study suggests a hybrid technique that 

combines “signature-based detection” for IT networks, “threshold-based detection “for OT 

networks, and behavioral-based Ensemble Learning (EL) for improved accuracy.  

Several publicly available research datasets are used to validate the hybrid technique. 

Minimizing a measure of behavioural-based data for "ML model" training, it employs a "divide-

and-conquer strategy" to outsource cyber threat detection to methods that rely on signatures and 

thresholds yet are computationally cheap. This leads to improved accuracy in less time. The 

experiment findings demonstrated an improvement in anomaly detection accuracy of 4-7% 

across many datasets. This is of utmost importance for CPS operators due to the significant 

financial implications and safety costs associated with system outages [70].  

Vincent et al (2024). The effectiveness, security, and cost-effectiveness of hyperphysical 

systems have been enhanced by the integration of communication and information technology 

with large-scale power grids.  

Despite its broad and open communication environment, the smart grid is susceptible to cyber-

attacks.  

A major threat to grid operations comes from data integrity attacks that circumvent conventional 

security measures. The existing smart grid detection algorithms aren't flexible enough to deal 

with non-Euclidean data sources or characteristics that are constantly changing and diverse. To 

detect data integrity breaches in cyber-physical systems, the author introduces a novel Deep-Q-

Network method based on a graph convolutional network (GCN) architecture. When compared 

to earlier benchmark approaches, the simulation results show that the framework is more 

accurate and scalable [71].  

JIMSHA K et. al (2024). This study provides a comprehensive methodology for intrusion 

detection in WSNs and addresses the vulnerabilities that are inherent to WSNs. A hybrid of 

regularization and PSO feature extraction with CNN-Bi-LSTM classification is proposed as a 

feasible solution. The system starts with meticulous data preparation, which involves 

normalizing the raw data acquired from the WSN. It is critical to standardize feature scales in 

order to guarantee data consistency and enhance interpretability. Then, pertinent features are 

identified and feature selection is optimized using the PSO algorithm. Reduced duplication and 

improved feature set discrimination are two ways in which PSO improves intrusion detection. 

With these features in hand, the CNN-Bi-LSTM model integrates the spatial feature extraction of 

CNN with the temporal modeling of Bi-LSTM.  

Bi-LSTM is better at finding temporal correlations in sequential sensor data than CNN is at 

focusing on spatial representations. This cooperation allows the framework to detect intricate 

infiltration patterns with high accuracy. Using tagged datasets for performance evaluation, the 

integrated system beats prior intrusion detection methods. In order to improve the security of 
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these critical networks, the results of the tests show that the framework may enhance intrusion 

detection in WSNs [72].  

Afrah et al (2024). In response to this, the authors have created an intrusion detection system 

(IDS) model that uses a combination of convolutional neural network (CNN) and long short-term 

memory (LSTM) DL methods.  

By combining the pattern recognition capabilities of convolutional neural networks (CNNs) with 

those of long short-term memories (LSTMs), this fusion makes it easier and more accurate to 

detect and categorize benign and malicious IoT data. After training the model using the recently 

released CICIoT2023 dataset, the authors ran final tests to see how well it performed, and 

finally, they utilized the CICIDS2017 dataset to confirm that their model had worked.  

A low loss of 0.0275 and an accuracy rate of 98.42% were achieved by the authors using the 

suggested model. Another crucially important factor is the false positive rate (FPR), which is 

9.17% when the F1-score is 98.57%. Cyber threat mitigation in IoT systems is facilitated by the 

proposed CNN-LSTM IDS paradigm [73].  

Roya et al. (2024). This paper presents a state-of-the-art solution for an Internet of Things (IoT) 

intrusion detection network using deep learning techniques and clean data. The author trains and 

tests their intrusion detection models using the open-source CICIDS2017 dataset, which contains 

information on botnet activity, port scans, and distributed denial of service attacks. The goal is to 

provide a method that is more effective than previous ones. The suggested deep learning model 

captures spatial and temporal data interactions using LSTM architecture and thick transition 

layers. When assessing the efficacy of the model, the writers relied on stringent measures 

including accuracy and sparse categorical cross-entropy loss. On test data, this method achieved 

an accuracy of 0.997, demonstrating its excellent yield. You can trust this model's intrusion 

detection capabilities since its loss and accuracy scores are consistent. You can see how effective 

this strategy is by comparing it to other machine learning techniques. Additionally, test how well 

the model holds up under challenging conditions by seeing how well it handles Gaussian noise. 

Additionally, it provides performance metrics for several attack types, demonstrating the model's 

utility in different threat situations[74]. 

Ju Hyeon et al. (2023). This research introduces a method for detecting cyber threats in solar 

plants' central system, the Programmable Logic Controller (PLC) of the inverter, using network 

packets. The cyber hazards were discovered during an investigation of cyberattacks and 

vulnerabilities in solar power facilities. To disrupt solar plant operations, inverters are the most 

common target of denial-of-service and malicious code injection assaults, according to the 

research. Before training machine learning-based classification models, the authors developed an 

anomaly detection method by preprocessing PLC network packet data using correlation analysis 

and normalization. An accuracy of 97.36% was achieved using the Random Forest model, which 

was the most effective. Solar plant security might be enhanced, anomalies in network packets 

could be detected, and cyber threats could be identified using the proposed technique [75]. 

M.Tuaama (2024). In a smart healthcare context, this work proposes a deep learning 

architecture (DLA) for managing anomaly detection. The DLA constructs the intelligent control 

procedure with the aid of perceptive, algorithmic self-learning that may automate and signal. 

Preprocessing and the incorporation of IoT gadgets from smart medical start the acquisition of 

huge volumes of data. To ensure the safety, security, and reliability of control methods and 

management service decisions, the next stage is to coordinate intelligence frameworks with 

DLA. To determine if a system state is normal or pathological, deep architectures build a 

mathematical model using training methods. These models build a composite analytic link by 

integrating data patterns with system variables; this connection aids in detecting both typical and 

unusual system behaviour[76]. 

Despite the excellent detection accuracies attained thus far, there is still room for improvement, 

according to our literature analysis. Accuracy levels and the amount of data manipulation are two 
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examples of these issues. There has been very little development in the area thus far. We have 

described the selected IDSs and compared their basic attributes in a table (1). The majority of the 

researchers concentrated on intrusion prevention, while some touched on intrusion detection in 

various ways. but just a small fraction made use of deep learning for intrusion detection. Thus, 

we are of the opinion that the methods and research presented in this paper may produce reliable 

outcomes while simultaneously cutting costs and saving time through the optimization of 

detection accuracy and the reduction of false alarms. 

Table 1 

 
NO Author&year Method Datset Objectives Advantage drawbacks 

 
Malik et 
al.(2023) 

ANID 
Palo Alto System 

Network Logs 
Process data 

more quickly. 
Processing at a 
superior speed 

Limited to 

specific regions 

of the network 

 
Roger et 
al.(2023) 

RL-Based ID 
8TB Real Network 

Traffic Data 

Reduced 

quantity of 
computing 

resources 

Accuracy and 

High 

Reliability 

utilized a single 

dataset, which 

makes it 
challenging to 

transfer to 

another dataset 

 

Afrifa et 

al.(2023) 
ML techniques public dataset 

recognize and 

avert botnet 
assaults on 

interconnected 

personal 
computers, 

particularly 

those 
involving 

internet of 

things 
devices. 

For the 
purpose of 

detecting 
botnet attacks, 

the method 

employs real-
time 

behavioral 

analysis driven 
by AI. For 

prompt 

prevention, 
this might be 

vital. 

The use of an 
ensemble 

approach 
including 

multiple ML 

models may 
increase the 

complexity of 

the 
implementation, 

calling for more 

computational 
resources and 

expertise. 

 
Ju Hyeon et 
al. (2023) 

ML 
PLC Network 
Packet Data 

The goal is to 

develop a 
method for 

detecting 

anomalies in 
solar plant 

PLC data that 

can protect 
inverters from 

cyber assaults. 

The Random 

Forest model's 

ability to 
detect cyber 

threats was 

shown by its 
remarkable 

97.36% 

accuracy rate. 

The model's 

ability to detect 
some types of 

attacks is 

contingent upon 
the variety and 

quality of the 

data retrieved 
from the 

network 

packets, but it 
can still capture 

some of them. 

 

Amiri et al 

2023 
ML(CNN,RNN,DNN,MLP) Micromed 

virtual 

environment 

Extreme 
precision 

Extensive 

reliability 

Inadequate 

evaluation of 
the approaches 

 

Sang et al. 

2024 
DRL 

Simulation with 

Real scenatio 

A Realistic 
Improvement 

in CPS 

Models 

effectiveness 

enhancement 

Given their 

reliance on 

similarity, they 
may fail to 

adequately 

portray the 

intricacy of real 

cyberthreats. 

 

Soltani et 

al.(2024) 
multi-Agent NIDS 

CICID2017&CSE-

CIC-IDS2018 

The objective 

is to enable a 
distributed 

IDS 

architecture 
that improves 

detection 

accuracy and 
tackles big 

data 

challenges by 
utilizing 

observations 

from several 
sensors. 

Its distributed 

detection 

function 
allows it to 

scale for 

networks with 
high 

throughput. 

The use of 

multi-agent 
systems allows 

for a more 

complex 
implementation. 
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To evaluate the proposed strategy in relation to comparable approaches found in the literature, 

Table 1 summarizes the main points. These features are linked to three things: (1) the security 

 
Singh et 
al.(2024) 

DRL NSL-KDD 

The system 

penalizes false 

positives in an 
effort to 

improve 

accuracy. 

The system 

has the 

potential to 
adjust to 

upcoming 

dangers. 

It could be 

more difficult 
to execute the 

technique. 

 

jeffrey et 

al.(2024) 
Hybrid ID 

Edge-IIoTest2023 

& CICIoT2023 

the cyber 
physical 

system's 

identification 
accuracy 

optimization 

Precision 

improvement 

Limited 

possibilities for 

knowledge 
sharing 

 

Vincent et 

al.(2024) 
DQN & GCN 

 

identify and 
thwart any 

dangers to the 

integrity of 
smart grid 

data, 

The detection 

accuracy is 

exceptionally 
high. 

It could be 

more difficult 

to execute the 
technique. 

 
JIMSHA K 
et. al (2024) 

PSO & CNN-Bi-LSTM 
Enumerated 

Datasets 

Using 
regularization, 

PSO, CNN, 

and Bi-

LSTM, we 

can improve 

the efficiency 
and accuracy 

of WSN 

intrusion 
detection. 

When it comes 

time to feature 

selection, PSO 
increases 

detection 

performance 
by removing 

irrelevant 

features and 
concentrating 

on the main 

ones. 

Using many 
sophisticated 

algorithms 

(CNN, Bi-
LSTM, PSO) 

increases the 

model's 
complexity, 

which may 

increase the 
time and 

resources 

needed for 
training. 

 
Afrah et al 

(2024) 
cnn & LSTM 

CICIoT2023 & 
CICIDS2017 

Developing a 

hybrid 

intrusion 
detection 

system The 

model that 
effectively 

and accurately 
uses CNN and 

LSTM to 

detect fake 

IoT traffic.. 

Identifies 
incursions 

with an 
accuracy of 

98.42%. 

Since the 

performance is 
assessed on 

specific 

datasets, its 
applicability to 

different IoT 
scenarios or 

datasets can be 

restricted. 

 

Roya et al. 

(2024) 
LSTM CICIDS2017 

Develop a 

cutting-edge 

IoT intrusion 
detection 

solution that 

surpasses 
state-of-the-

art methods 

by leveraging 
deep learning 

The model's 

remarkable 
ability to 

detect 

intrusions was 
on full display 

when it 

obtained an 
astounding 

0.997 accuracy 

on test data. 

It may be 

difficult to 

generalize 
results from 

studies 

conducted on 
the 

CICIDS2017 

dataset to other 
datasets or real-

world Internet 

of Things 
environments. 

 
M.Tuaama 

(2024) 
DNN SDN-IoT 

The 

importance of 
using deep 

neural 

networks 

(DNN) to 

detect 

network 
attacks, 

classify 

anomalies, 
and enhance 

the protection 

of IoT devices 
in healthcare 

environments. 

Enhanced 

Diagnostics: 

IoT enables 

the collection 

of a wide 

range of 
health-related 

metrics, 

providing a 
comprehensive 

view of patient 

health. 

Complexity in 

Model 

Selection: The 

success of deep 

learning models 

relies heavily 

on selecting the 

right 
architecture, 

making it 

challenging to 
ensure 

consistent 

reliability 
across different 

scenarios. 
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implementation method; (2) the dataset used with this algorithm; and (3) the model's advantages 

and shortcomings. 

5. METHODOLOGY 

Here, we provide a DNN-based architecture for cyber-physical systems network vulnerability 

and threat detection. We begin by discussing the framework's main workflow and then examine 

the evaluation of each step and its important contributions. 

5.1. The suggested framework's workflow 

It consists of five primary steps: Extracting useful data via preprocessing, maintaining class 

equilibrium through augmented data, and discovering optimal characteristics through feature 

selection. Step one is to prepare the features for encoding and dataset segmentation. Step two is 

to train and evaluate the DNN model. Figure 1 shows the proposed system's procedure flow. 

Each of these procedures will have its operational basics explained in great depth. 

Preprocessing Data: We begin by collecting raw network data with the networking analysis 

tool. After that, we extract attributes from the packets. After discarding unnecessary packets from 

the dataset, we gather samples of classes inside it.  

Using the encoding method, we converted the symbolic data to integers, and then we used min-

max standardization to ensure that all of the numerical values in the dataset were consistent. 

 Symbolic Encoding: 

Features that fall within the category of: 𝑋𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝑒𝑛𝑐𝑜𝑑𝑒(𝑋𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 )……(1) 

 Normalization using Min-Max: 

With regard to continuous features: 𝑋! =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 ………………………..(2) 

Data Augmentation: Imbalanced data occurs when the sample sizes of each class are not evenly 

distributed, resulting in data skewness that biases the model towards a class with a more 

significant amounts of samples.  

Resampling the training data before classification helps to reduce class imbalance. Oversampling 

requires increasing the number of samples from minority classes, whereas undersampling 

involves decreasing the number of samples from majority classes. 

Researchers are using the oversampling approach; nevertheless, it leads to the problem of 

overfitting owing to the redundancy of the data obtained from oversampling [22]. The Synthetic 

Minority Oversampling Technique (SMOTE) generates new samples by picking instances from 

the minority class, but it also produces noise and class overlap. 

Recent advancements in generative adversarial networks (GANs) utilize neural networks to 

produce synthetic data that closely resembles original datasets [23]. 

Because GANs permit model adjustment, which aids in developing an accurate model, and 

because they avoid overfitting, and class overlap, as well as noise problems, they are superior to 

other traditional approaches like SMOTE [24]. 

To ensure that the dataset is balanced, we extract fresh samples from it. With GANs, we are able 

to raise the packet count for the minority attack classes. The dataset becomes more balanced 

when the synthetic data is generated. Goodfellow et al. [26] introduced GANs, which are 

comprised of a pair of neural networks that collaborate to produce synthetic data and identify 

both real and synthetic data. Generative networks take an input dataset and use it to create 

artificial data; The produced data is separated from the real data in the input set using a 

discriminator network. 
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 Handling Class Imbalance: 

Data oversampling using SMOTE or GAN: 𝑋𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝐺𝐴𝑁(𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦) 

Where GAN generates synthetic samples of the minority class. 

To a balanced dataset:  

 |𝑋𝑐𝑙𝑎𝑠𝑠1| ≈ |𝑋𝑐𝑙𝑎𝑠𝑠2|  

 Feature Selection: selecting features decreases computational costs and increases storage 

efficiency [77]. The following methods are used for feature selection: 

 A filter method is one that uses the correlation scores of characteristics to determine how 

related they are. We choose features according to the scores and threshold value of statistical 

methods, which are used for feature selection. Methods like the Chi-Square test, information 

gain, and correlation are the most popular. 

 Wrapper Methods: A machine learning (ML) model is trained on an subset of features 

using wrapper methods. The subset's characteristics are either added to or removed from 

depending on the model's accuracy. Two of the most prevalent examples of this kind of 

approach are forward selection and backward elimination. 

 Embedded Methods: Combining the best features extraction with computational cost 

preservation, this strategy is an improvement over both the filter and wrapper approaches. 

Two of the most prevalent variants of this approach are Random Forest [78] and LASSO 

regularization [79].  

 Dataset partitioning: 

𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙, 𝑋𝑡𝑒𝑠𝑡 = 𝑠𝑝𝑙𝑡(𝑋, 𝑡𝑟𝑎𝑖𝑛_𝑠𝑖𝑧𝑒, 𝑣𝑎𝑙_𝑠𝑖𝑧𝑒, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒  

Where the data is partitioned into sets for testing, validation, and training. 

We conduct our studies using the Filter Method since it is significantly quicker and uses less 

compute than the other two approaches. 

 Feature preprocessing: Following feature extraction, feature reduction, and feature 

encoding, we partitioned the data we had processed into three sets: training, validation, and 

testing. Each set included the labels for normal and attack-type classes. 

 Training &Testing Dataset: The DNN model is taught to use the training set's processed 

data during the training phase. After training, the model is put to the test using the testing set 

data, which it uses to distinguish between normal and attack kinds. 

6. RESULT ANALYSIS 

To achieve better accuracy, we construct multiple DNN designs using varied dense hidden layers 

and neuronal densities in each layer. The DNN model, which uses three dense hidden layers—

each with 64 neurons—to get the greatest results. The amount of neurons and thick hidden layers 

determines the model's complexity. When the value is tiny, it indicates that the model is 

underfitting; conversely, when the value is big, it indicates that the model is overfitting. Through 

the use of Adam optimiser, we experimented with various learning rates and discovered that the 

default value of 0.001 yields superior accuracy. 

Using metrics, we evaluate the suggested DNN Algorithm with different attacks in the dataset. 

This includes the F1 score, precision, accuracy, and recall. Furthermore, provides categorization 

confusion matrices. The model's performance is assessed using evaluation metrics when two 

classes, C1 and C2, are provided. 
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Model of DNN Algorithm for Training. 

The model parameters are updated using gradient descent. For each epoch, weights W are 

updated: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂. ∇L(𝑊𝑡 ) 

Where η is the learning rate and L(W) is the loss function (e.g., cross-entropy loss): 

 𝐿 = −
1

𝑁
 ∑ [𝑦𝑖 log(𝓎𝑖

∧) + (1 − 𝓎𝑖 )log (1 − 𝓎𝑖
∧  )]𝑁

𝑖=1  

Efficiency learning and performance assessment both seek to estimate a model's accuracy on 

future data and metrics, so that researchers may analyse the efficacy of the suggested approach 

and compare it to other models. This will help them decide which methodology is most suited for 

this activity. As a result of its predictive capabilities, the confusion matrix sheds insight on 

categorisation problems. The classifier's accuracy (Equation 1), sensitivity (also known as a true 

positive rate [TPR] or recall) (Equation 2), false-positive rate (FPR) (Equation 3), precision 

(Equation 4), specificity (Equation 5), F1-score (Equation 6) and the types of errors (TP, FP, FN, 

and TN) are all provided. The ROC curve illustrates the classifier's accuracy and the connection 

between the true positive and false positive rates in various threshold circumstances. 

Evaluation Metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)……………………..…………..(1) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)………………………………………….…………...(2) 

𝑭𝑷𝑹 = 𝐹𝑃/(𝑇𝑁 + 𝐹𝑃)…………………………………………………(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑁 + 𝐹𝑃)………………………………...………….(4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)………………………….………………(5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑇𝑃/(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)…………………………….(6) 

To identify malicious actions, several academics have created sophisticated ML-based models 

that compete with one another. 

Table 2. Different ML classifiers' accuracy 

Classical classification 

methods 
Accuracy 

RF 98.01 

SVM 97.39 

SGD 97.65 

Logistic Regression 97.01 

Linear Discriminant 

Analysis 
97.94 

Gaussian NB 89.14 

our Proposal 98.37 
 

Table 2 lists the accuracy of the classic ML approach; it is evident that DNN models outperform 

it when it comes to detecting invasive behaviours. 

This article presents a variety of Network-CPS suggested models that investigate literature on 

threat detection. Along with other models like decision trees, naïve Bayesian, and random 

forests, Ham et. al[80] presented the linear SVM algorithm for use on a synthetic data set. This 

model would perform multiclassification and be evaluated using metrics like TPR, FPR, 

precision, accuracy, and F-measure. As demonstrated in Table 3, SVM has achieved an accuracy 

of 99.7 percent and an F1-score of 95.4 percent, whereas our suggested model has an accuracy of 

98.37 percent and an F1-score of 98.0 percent. Due to the synthetic nature of the data, the F1-
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score, which includes both false-negative and false-positive cases, will be given greater weight 

than accuracy.  

Table 3. A comparison of the proposed model's accuracy to that of other models 

Author Dataset Model Accuracy 
our 

proposal 

13 Synthetic SVM 99.7 98.37 

  
Bayes net 94.3 

 

  
RF 91.5 

 

  
Naïve Bayes 70.4 

  

7. CONCLUSION AND FUTURE WORK 

Studies on privacy and network security have been conducted in recent years regarding 

cyberphysical systems (CPS). Several proposals for IDS designs based on ML and DL have been 

made. The Internet of Things (IoT) makes extensive use of deep learning for intrusion detection. 

We addressed the imbalance of the problem class in the dataset. We demonstrated the 

effectiveness of our proposed framework in CPS networks by increasing the delivery of DNN-

based packets belonging to minority assault classes, feature selection, and GANs. With GANs, 

the classifier achieves 98% accuracy in multi-class classification, whereas with traditional 

methods, it reports an accuracy of 97% in predictions. The findings have important implications 

for cyber-security. Selected features and an increase in the amount of DoS attack packets allow 

for accurately classifying attacks as either regular or malicious. Nevertheless, we ran into a 

number of problems. To create traffic for the dataset's minority assaults, the suggested model 

may be used with GANs, and The method may be used with different datasets that have unequal 

classification labels. The feature selection method has cut down on the model's feature count, 

which in turn has lowered the model's cost.  

To decrease the feature count prior to classification, one might apply a variety of feature 

extraction and selection methods. This study focused on five distinct kinds of traffic while doing 

multi-class categorization. It is possible to develop a new DNN-based classifier with improved 

accuracy and reduced loss in FN terms and FP predictions, and future dataset updates should 

include more minority attack categories. Another potential future goal of this research is to 

develop a DNN-based intrusion detection model for Cyber-Physical Systems networks that can 

operate in real-time. 
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