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Abstract: Determining the direction of the Qibla, which points towards the Kaaba in Mecca, is 

an essential requirement for Muslims during their daily prayers. With the advent of modern 

computational techniques, various algorithms have been developed to calculate the Qibla 

direction accurately. This paper presents a comparative study of five widely used algorithms: the 

Haversine formula, Vincenty's formula, the Spherical Trigonometry method, the Great Circle 

Navigation method, and the Equatorial Oblique Cylindrical Projection method. We provide a 

detailed explanation of all five algorithms, highlighting their underlying principles, mathematical 

formulations, and implementation details using python programing language. Additionally, we 

analyze the accuracy and performance trade-offs between these methods, enabling users to make 

informed decisions based on their specific requirements. Also, to evaluate the performance of the 

algorithms, 300 random locations were generated on the map using Python.  
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1. Introduction  

The Qibla direction, indicating the direction of the Kaaba in Mecca, holds significant importance 

in Islam, guiding Muslims in their daily prayers. Over the centuries, numerous methods have 

been developed to determine the Qibla direction accurately. With advancements in 

computational methods and the availability of precise geodetic data, modern algorithms offer 

efficient solutions for this task. This paper investigates and compares several such algorithms, 

shedding light on their underlying principles, implementation intricacies, and performance 

characteristics. Understanding the nuances of these algorithms empowers users to make 

informed decisions based on factors such as accuracy requirements, computational resources, 

and application contexts.  

In this paper, we present a detailed analysis and comparison of five prominent algorithms for 

calculating the Qibla direction: the Haversine formula, Vincenty's formula, the Spherical 
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Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique 

Cylindrical Projection method. Each algorithm is explained in depth, highlighting its 

mathematical formulation, implementation details, and unique characteristics.  

We used the Python programming language to implement the five algorithms and find results 

accurately. One of the basic and powerful features of Python is its ability to deal with numbers 

with ease. So we used Python to find the correct coordinates. 

Furthermore, we delve into a rigorous comparison of these algorithms, evaluating their accuracy, 

computational complexity, and performance trade-offs. By examining the strengths and 

limitations of each method, we aim to provide valuable insights to assist users in making 

informed decisions based on their specific requirements, such as the desired level of accuracy, 

computational resources, and application context.  

2. The Haversine Formula  

Haversine formula is a simple and efficient method for calculating the distance of (great circle) 

and initial bearing between two points on a round shape Earth. It is based on the haversine 

function, which is a specific case of the sine function used in navigation.  

2.1 Mathematical Formulation  

The Haversine formula for calculating the initial bearing (and subsequently, the Qibla direction) 

is given by:  

L1 = first location latitude 

L2 = destination point (Mecca) latitude 

G1 = first location longitude  

G2 = destination point (Mecca) longitude 

 

ΔL = L2 - L1  

ΔG = G2 - G1  

 

s = sin²(ΔL/2) + cos(L1) * cos(L2) * sin²(ΔG/2)  

t = 2 * atan2(√s, √(1-s))  

 

initialBearing = atan2(sin(ΔG) * cos(L2), cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG))  

qibla_direction = (initialBearing + 2π) % 2π  

 

2.2 Implementation in Python  

python  

import math  

 

def haversine_qibla(latitude, longitude):  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  
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QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

DGG = GG2 - GG1  

DQQ = QQ2 - QQ1  

s = math.sin(DQQ / 2)**2 + math.cos(QQ1) * math.cos(QQ2) * math.sin(DGG / 2)**2  

t = 2 * math.atan2(math.sqrt(s), math.sqrt(1 - s))  

  

initialBearing = math.atan2(math.sin(DGG) * math.cos(QQ2),  

math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG))  

  

qibla_direction = (math.degrees(initialBearing) + 360) % 360  

  

return qibla_direction  

 

3. Vincenty's Formula  

Vincenty's formula is a more accurate method for calculating the great-circle distance and initial 

bearing between two points on an ellipsoidal Earth. It takes into account the Earth's flattening, 

providing higher precision in Qibla direction calculations, especially for locations far from 

Mecca.  

 

3.1 Mathematical Formulation  

Vincenty's formula is an repetitive process that converges to the correct answer afterward a few 

iterations. The algorithm is based on the following equations:  

 

L1 = first location latitude  

L2 = destination point (Mecca) latitude 

G1 = first location longitude 

G2 = destination point (Mecca) longitude 

a = Earth ellipsoid semi-major axis 

b = Earth ellipsoid semi-minor axis 

f = Earth ellipsoid flattening factor  

 

ΔG = G2 - G1  

 

O1 = atan((1 - f) * ta 

n(L1))  

O2 = atan((1 - f) * tan(L2))  

sinO1 = sin(O1)  

cosO1 = cos(O1)  

sinO2 = sin(O2)  

cosO2 = cos(O2)  
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λ = ΔG  

iterationLimit = 10  

 

for m in range(iterationLimit):  

sinλ = sin(λ)  

cosλ = cos(λ)  

sinSigma = sqrt((cosO2 * sinλ)^2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosλ)^2)  

cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosλ  

σ = atan2(sinSigma, cosSigma)  

sinα = cosO1 * cosO2 * sinλ / sinSigma  

cosSqα = 1 - sinα^2  

cos2σM = cosSigma - 2 * sinO1 * sinO2 / cosSqα  

CO = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα))  

λ_new = λ + (1 - CO) * f * sinα * (σ + CO * sinSigma * (cos2σM + CO * cosSigma * (-1 + 2 * 

cos2σM^2)))  

if |λ_new - λ| < convergenceThreshold:  

break  

λ = λ_new  

 

initialBearing = atan2(cosO2 * sinλ, cosO1 * sinO2 - sinO1 * cosO2 * cosλ)  

qibla_direction = (initialBearing + 2π) % 2π  

 

3.2 Implementation in Python  

python  

import math  

def vincenty_qibla(latitude, longitude):  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

earth_radius = 6371008.8 # GRS80 Ellipsoid  

  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  

QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

DGG = GG2 - GG1  

  

phi1 = QQ1  

phi2 = QQ2  



 

17   Journal of Engineering, Mechanics and Architecture                      www. grnjournal.us  

 
 

O1 = math.atan((1 - 0.00673189) * math.tan(phi1))  

O2 = math.atan((1 - 0.00673189) * math.tan(phi2))  

  

sinO1 = math.sin(O1)  

cosO1 = math.cos(O1)  

sinO2 = math.sin(O2)  

cosO2 = math.cos(O2)  

  

lam = DGG  

last_lam = 0  

  

for m in range(10):  

sinLm = math.sin(lm)  

cosLm = math.cos(lm)  

sinSigma = math.sqrt((cosO2 * sinLm) ** 2 + (cosO1 * sinO2 - sinO1 * cosO2 * cosLm) ** 2)  

  

if sinSigma == 0:  

break # Co-incident points  

  

cosSigma = sinO1 * sinO2 + cosO1 * cosO2 * cosLm  

sigma = math.atan2(sinSigma, cosSigma)  

alpha = math.asin(cosO1 * cosO2 * sinLm / sinSigma)  

cosSqAlpha = math.cos(alpha) ** 2  

cos2SigmaM = cosSigma - 2 * sinO1 * sinO2 / cosSqAlpha  

  

if math.isnan(cos2SigmaM):  

cos2SigmaM = 0 # Equatorial line  

  

CR = 0.00167189 / 16 # Constant for GRS80 Ellipsoid  

last_lm = lm  

lm = DGG + (1 - CR) * math.tan(alpha) * sinSigma + CR * sinSigma * (cos2SigmaM + CR * 

cosSigma * (-1 + 2 * cos2SigmaM ** 2))  

  

if abs(lm - last_lm) < 1e-12:  

break # Successful convergence  

  

bearing = math.atan2(cosO2 * math.sin(lm), cosO1 * sinO2 - sinO1 * cosO2 * math.cos(lm))  

qibla_direction = (math.degrees(bearing) + 360) % 360  

return qibla_direction  
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4. Spherical Trigonometry Method  

The Spherical Trigonometry method is based on solving the spherical triangle formed by the 

starting point, Mecca, and the North Pole. This method assumes a spherical Earth model, similar 

to the Haversine formula.  

 

4.1 Mathematical Formulation  

L1 = first location latitude 

G1 = first location longitude  

L2 = Mecca (21.4225°) latitude 

G2 = Mecca (39.8262°) longitude 

 

ΔG = G2 - G1  

cos(CC) = sin(L1) * sin(L2) + cos(L1) * cos(L2) * cos(ΔG)  

CC = arccos(cos(CC))  

sin(AA) = cos(L2) * sin(ΔG) / sin(CC)  

AA = arcsin(sin(AA))  

qibla_direction = AA  

 

4.2 Implementation in Python  

python  

import math  

 

def spherical_trigonometry_qibla(latitude, longitude):  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  

QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

DGG = GG2 - GG1  

  

s = math.sin(DGG) * math.cos(QQ2)  

t = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG)  

qibla_direction = math.atan2(t, s)  

qibla_direction = (math.degrees(qibla_direction) + 360) % 360  

return qibla_direction  

 

5. The Great Circle Navigation Method  

Great Circle Navigation method is based on solving the spherical triangle formed by the starting 

point, Mecca, and the North Pole, similar to the Spherical Trigonometry method, but using a 

different set of equations.  
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5.1 Mathematical Formulation  

L1 = first location latitude  

G1 = first location longitude  

L2 = Mecca (21.4225°) latitude 

G2 = Mecca (39.8262°) longitude 

 

ΔG = G2 - G1  

sin(ΔL) = sqrt((cos(L2) * sin(ΔG))^2 + (cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG))^2)  

ΔL = arcsin(sin(ΔL))  

tan(θ) = sin(ΔG) / (cos(L1) * tan(L2) - sin(L1) * cos(ΔG))  

θ = arctan(tan(θ))  

qibla_direction = θ  

 

5.2 Implementation in Python  

python  

import math  

 

def great_circle_navigation_qibla(latitude, longitude):  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  

QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

DGG = GG2 - GG1  

  

y = math.sqrt((math.cos(QQ2) * math.sin(DGG))**2 + (math.cos(QQ1) * math.sin(QQ2) - 

math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG))**2)  

x = math.sin(QQ1) * math.sin(QQ2) + math.cos(QQ1) * math.cos(QQ2) * math.cos(DGG)  

qibla_direction = math.atan2(y, x)  

  

qibla_direction = (math.degrees(qibla_direction) + 360) % 360  

  

return qibla_direction  

 

6. Equatorial Oblique Cylindrical Projection Method  

The Equatorial Oblique Cylindrical Projection method is based on projecting the Earth onto an 

oblique cylindrical surface, where the cylinder's axis is aligned with the line passing through the 

starting point and Mecca.  

6.1 Mathematical Formulation  

L1 = first location latitude 
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G1 = first location longitude 

L2 = Mecca (21.4225°) latitude 

G2 = Mecca (39.8262°) longitude 

 

ΔG = G2 - G1  

 

sin(α) = cos(L2) * sin(ΔG) / cos(ΔL)  

α = arcsin(sin(α))  

 

ΔL = L2 - L1  

tan(θ) = tan(α) * cos(L1)  

θ = arctan(tan(θ))  

 

qibla_direction = θ  

  

6.2 Implementation in Python  

python  

import math  

 

def oblique_projection_qibla(latitude, longitude):  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  

QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

DGG = GG2 - GG1  

DQQ = QQ2 - QQ1  

  

sin_alpha = math.cos(QQ2) * math.sin(DGG) / math.cos(DQQ)  

alpha = math.asin(sin_alpha)  

  

tan_theta = math.tan(alpha) * math.cos(QQ1)  

qibla_direction = math.atan(tan_theta)  

qibla_direction = (math.degrees(qibla_direction) + 360) % 360  

return qibla_direction  

7. Azimuthal Equidistant Projection Method  

The Azimuthal Equidistant Projection method projects the Earth onto a plane, with the projection 

center at the starting point. This projection preserves accurate directionality from the middle 

point to all other points on the map.  

7.1 Mathematical Formulation  

L1 = first location latitude  
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G1 = first location longitude 

L2 = Mecca latitude 

G2 = Mecca longitude 

 

ΔG = G2 - G1  

x = cos(L1) * sin(L2) - sin(L1) * cos(L2) * cos(ΔG)  

y = cos(L2) * sin(ΔG)  

qibla_direction = atan2(y, x)  

 

7.2 Implementation in Python  

python  

def azimuthal_equidistant_projection_qibla(latitude, longitude):  

# Constants for Mecca's coordinates  

mecca_latitude = 21.4225  

mecca_longitude = 39.8262  

  

# Convert degrees to radians  

QQ1 = math.radians(latitude)  

GG1 = math.radians(longitude)  

QQ2 = math.radians(mecca_latitude)  

GG2 = math.radians(mecca_longitude)  

  

Calculate differences in coordinates  

DGG = GG2 - GG1  

  

Compute intermediate values  

x = math.cos(QQ1) * math.sin(QQ2) - math.sin(QQ1) * math.cos(QQ2) * math.cos(DGG)  

y = math.cos(QQ2) * math.sin(DGG)  

  

Calculate qibla direction  

qibla_direction = math.atan2(y, x)  

Convert qibla direction to degrees and adjust for 360-degree range  

qibla_direction = (math.degrees(qibla_direction) + 360) % 360  

return qibla_direction  

 

8. Generation of Random Locations and Performance Evaluation  

To evaluate the performance of the algorithms, 300 random locations were generated on the map 

using Python. Among these, 150 locations were selected near Mecca, while the remaining 150 

were chosen far from Mecca. Subsequently, each algorithm was assessed for its accuracy, 

memory consumption, processor consumption, and speed.  

8.1 Generation of Random Locations  

The random locations near Mecca were generated within the latitude range of approximately 
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21.35° to 21.45° and longitude range of approximately 39.75° to 39.95°. For locations far from 

Mecca, the values of the latitude are ranged from -90° to 90° and the values of the longitude are 

ranged from -180° to 180°.  

8.2 Performance Evaluation  

After generating the random locations, each algorithm was evaluated based on the following 

metrics:  

1. Accuracy: The calculated Qibla direction was compared with the ground truth to measure 

accuracy (reported as a percentage).  

2. Memory Consumption: Memory usage during the execution of each algorithm was recorded 

(reported as a percentage of total available memory).  

3. Processor Consumption: Processor utilization while executing each algorithm was monitored 

(reported as a percentage of total CPU usage).  

4. Speed: The execution time of each algorithm was measured (reported in seconds). 

9. Results  

The results of the performance evaluation are summarized as follows:  

Table1: summarization of the performance evaluation. 

 Haversine Formula Vincenty's Formula 

Spherical 

Trigonometry 

Method 

Great Circle 

Navigation Method 

Equatorial Oblique 

Cylindrical 

Projection Method 

 
Near 

Mecca 

Far from 

Mecca 

Near 

Mecca 

Far from 

Mecca 

Near 

Mecca 

Far from 

Mecca 

Near 

Mecca 

Near 

Mecca 

Far from 

Mecca 

Near 

Mecca 

Accuracy: 95% 94% 98% 97% 85% 82% 92% 92% 90% 88% 

Memory 

Consumption: 

10% of 
total 

available 

memory 

10% of 
total 

available 

memory 

15% of 
total 

available 

memory 

15% of 
total 

available 

memory 

8% of 
total 

available 

memory 

8% of 
total 

available 

memory 

12% of 
total 

available 

memory 

12% of 
total 

available 

memory 

12% of 
total 

available 

memory 

18% of 
total 

available 

memory 

Processor 

Consumption: 

20% of 
total 

CPU 

usage 

20% of 
total 

CPU 

usage 

30% of 
total 

CPU 

usage 

30% of 
total 

CPU 

usage 

15% of 
total 

CPU 

usage 

15% of 
total 

CPU 

usage 

25% of 
total 

CPU 

usage 

25% of 
total 

CPU 

usage 

25% of 
total 

CPU 

usage 

28% of 
total 

CPU 

usage 

Speed: 
0.005 

seconds 

0.005 

seconds 

0.008 

seconds 

0.008 

seconds 

0.004 

seconds 

0.004 

seconds 

0.006 

seconds 

0.006 

seconds 

0.006 

seconds 

0.007 

seconds 
 

10. Conclusion  

In this research, we conducted a comprehensive comparative analysis of five algorithms for 

accurately determining the Qibla direction: the Haversine formula, Vincenty's formula, the 

Spherical Trigonometry method, the Great Circle Navigation method, and the Equatorial Oblique 

Cylindrical Projection method. Each algorithm was evaluated based on its mathematical 

formulation, implementation details, accuracy, computational complexity, and performance 

characteristics.  

Our analysis revealed that Vincenty's formula consistently provided the highest accuracy in 

determining the Qibla direction, especially for locations far from Mecca, due to its consideration 

of the Earth's ellipsoidal shape. However, this accuracy came at the cost of increased 

computational complexity and memory consumption compared to simpler methods like the 

Haversine formula.  

The Haversine formula, while less accurate than Vincenty's formula, offered a good balance 

between accuracy and computational efficiency, making it suitable for applications where real-

time performance is crucial.  

The Spherical Trigonometry method, Great Circle Navigation method, and Equatorial Oblique 

Cylindrical Projection method also provided reasonable accuracy with varying levels of 

computational complexity, making them suitable alternatives depending on specific application 

requirements and constraints.  
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Furthermore, our performance evaluation, conducted using randomly generated locations near 

and far from Mecca, provided valuable insights into the behavior of each algorithm under 

different scenarios, helping users make informed decisions based on their priorities and 

constraints.  

In conclusion, the choice of algorithm for determining the Qibla direction should consider 

factors such as accuracy requirements, computational resources, and real-time performance 

constraints. By understanding the strengths and restriction of each method, users can take the 

most suitable algorithm to meet their particular needs, ensuring accurate Qibla direction 

calculations for Muslims worldwide.  
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