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Abstract: When it comes to mechanical characteristics, banana fibre is second to none, and 

it's abundant in nature. Efficient cooling can extend the life of the engine and enhance its 

performance. In order to evaluate the relative heat dissipation capabilities of aluminium and copper 

radiator tubes, this project calls for the construction of a flow heat exchanger. We calculated heat 

transfer and total efficiency using the log mean temperature difference approach. The ANSYS 

software was also used for the thermal behaviour investigation. A cooling fan is important to this 

project's simulation of real-time conditions for moving and idle variables (forced and free convection).  

Both theoretical and experimental investigations into cross-flow heat exchangers have yielded the 

following results: the heat transfer and overall heat transfer coefficients are determined by using the 

log mean temperature difference method, which is dependent on the inlet and outlet fluid 

temperatures as well as the effectiveness of the device. This finding demonstrates that heat transfer 

is linearly proportional to the mass flow rate of air and that its effectiveness is inversely proportional 

to the mass flow rate. 

Keywords:  Ansys Fluent; Convection Heat Transfer; Heat Exchanger; Engine Oil SAE 

5w30; Anemometer; Speed Control Regulator 

 

Introduction  

The internal combustion engines found in modern automobiles produce an enormous quantity of 

thermal energy. The combustion chamber is responsible for producing this heat by lighting the fuel and 

air combination [6]. The internal combustion engine generates thrust by the explosion of the piston, 

which in turn turns the crankshaft by pulling on the connecting rods [7-13]. In the vicinity of the 

combustion chamber, metals can reach temperatures higher than 1000°F. Efficient heat disposal is 
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essential to avoid engine oil, cylinder walls, pistons, valves, and other components from being 

overheated by these extremely high temperatures. The mechanical work consumes 25% of the heat, the 

exhaust gases lose 35%, and the lubrication system loses 5%. At least 35% of the heat should be 

dissipated by the cooling system [15-19].  

 

In favour of the more efficient liquid-cooled system, automotive engines have abandoned the air-cooled 

one [20]. A heat-absorbing coolant runs throughout the engine in a liquid-cooled system, particularly 

in the cylinder head area of the engine block, to dissipate heat, particularly around the combustion 

chamber. After soaking up the heat from combustion, the coolant is pushed back out into the 

atmosphere via the radiator after going through the engine. After cooling, the liquid is transported to 

the engine for recirculation [21-25]. Heat exchangers can be found in many different types of 

machinery and appliances, including: boilers, condensers, evaporators, regenerators, oil coolers for 

heat engines, milk chillers in pasteurising facilities, radiators in automobiles, and many more industrial 

operations [26]. When the intake and outlet conditions are determined, the logarithmic mean 

temperature difference (LMTD) can be used to build heat exchangers. To simplify the analysis of 

finding the inlet or exit temperature of a specific heat exchanger, one can use a method that relies on 

the heat exchanger's effectiveness (a concept initially put forward by Nusselt) and the number of 

transfer units (NTU). The effectiveness of a heat exchanger is defined as the ratio of its actual heat 

transfer to its maximum possible heat transfer [27-33].  

 

An apparatus that allows the transfer of thermal energy between fluids of various temperatures is 

known as a heat exchanger. The flow of coolant through the tube and the airflow over the fins. The two 

fluids are kept separate as they flow at right angles to one another. As a result, heat is transferred from 

the coolant to the air. In cross-flow heat exchangers, this flow is used [34-41].  The term "cross-flow 

heat exchanger" refers to a piece of machinery that allows heat to be transferred between fluids of 

different temperatures [42]. Typically, in a cross-flow heat exchanger, the two streams of fluid travel 

in opposite directions. Improving the number of turns in a cross-flow heat exchanger decreases the oil 

flow rate while increasing the heat transfer (Figure 1).   

 

 
 

Figure 1: Classification of heat exchanger 

 

The two fluid streams, one hot and one cold, move through the heat exchanger in the same direction in 

a parallel flow heat exchanger. One end of the heat exchanger receives the fluid streams, while the 

other end is where they exit [43-49]. It is evident from the heat exchanger's schematic and temperature 

profile that the fluid streams' temperature difference reduces as it moves from the entrance to the outlet 

of the parallel flow heat exchanger (Figure 2).   
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Figure 2:  Parallel flow heat exchanger 

 

The two fluid streams, one hot and one cold, move in nearly opposite directions in a heat exchanger 

known as a counterflow. The two streams of fluid meet at opposing points. The disparity in temperature 

between the two streams of fluid is very stable [50-55]. The maximum heat transfer rate for a specific 

surface area can be found using counterflow heat exchangers (Figure 3).   

 

 
 

Figure 3:  Counter flow heat exchanger 

 

Typically, in a cross-flow heat exchanger, the two streams of fluid travel in opposite directions. The 

cross-flow heat exchanger is depicted schematically. Air is utilised as the cooling media in our 

laboratory's finned type cross-flow heat exchanger (Figure 4).   

 

 
 

Figure 4: Cross-flow heat exchanger 

 

The shell of this heat exchanger is typically cylindrical, and it encases a bundle of tubes. The orientation 

of the tubes is parallel to the axis of the shell. The tubes form a bundle, and one stream of fluid travels 

through them, while the other runs across the shell [56-60]. By utilising numerous shell & tube passes 

with baffles, the heat transmission between the fluid streams is improved. The fluid stream on the shell 
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side is redirected to flow in a reciprocating fashion over the tubes.  

 
Figure 5:  Shell & Tube heat exchanger 

 

Plate heat exchangers are made up of a series of interconnected thin metal plates that have been 

corrugated (Figure 5).  The fluid streams are distributed to the plates after entering the heat exchanger 

through the frame connections. Between each set of plates, there is a space that the two fluid streams 

flow through in opposite directions. Overall, the heat transfer between the fluid streams is improved 

because the metal plate grooves and tiny spacing create a turbulent flow [61-66]. Additionally, the 

flow's eddies clean the heat exchanger's surface, reducing fouling. Plate heat exchangers are widely 

used in industries due to their low cost, easy maintenance, and high thermal efficiency (Figure 6). 

 
 

Figure 6: Plate-type heat exchange 

 

To describe the application of infinitesimally "differential elements" in calculus and partial differential 

equations, the phrase "finite element" is used. Accurately determining values from analyses might be 

challenging, however this method helps with complicated structure analysis [67-81]. A more refined 

approach to conducting in-depth analyses of stresses, displacements, and support reactions in 

complicated shapes is made possible by increasing the number of small elements in MESH rather than 

the number of larger ones. This, in turn, produces more accurate conclusions. After 40 years, FEA has 

expanded its scope to include more complicated boundaries than finite differential equations [82]. 

When an agent specifies a software artefact to achieve goals with a collection of basic components that 

are subject to limitations, this is called software design. To design software is to engage in "all the 

work involved in envisioning, framing, implementing, commissioning, and eventually altering 

complex systems" or "the activity following requirements definition and preceding programming, as 

in a stylized software engineering process." Designing software typically entails figuring out problems 

and making plans for software solutions. Everything from low-level components to high-level 

architecture design and algorithm design falls under this category [83-89].  

 

Literature Review 

Radiators in cars use a circular heat exchanger, which Chavan and Tasgaonkar [1] describe. Because 

the air drawn in by the fan condenses into a small, circular region, the radiator's corners tend to get 
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very hot, necessitating a redesign of the heat exchanger to a more rectangular or square form. In the 

current layout, the power consumption of the fan is minimised because there is no heat transfer area in 

the centre, where the airflow is practically nonexistent. Create a round radiator with no corners for 

maximum efficiency.  

 

The prismatic cells, also known as Li-ion cells, are addressed by Mayer et al. [2], who divide them into 

two cooled modules at the base. The top module incorporates a channel into its structure, while the 

bottom module makes use of cooling fins. Cylindrical cells are exposed to ambient air through the 

process of airflow via openings in the lateral cell surfaces. The fin allows heat to be transmitted from 

the battery pack to the air, and vice versa. Due to the fact that the extra weight of the fins exceeds the 

cooling benefits, using them to cool the electric car battery has become less popular.  

 

The incorporation of fins was the primary emphasis of Kavitha et al. [3] in their investigation into 

methods to enhance and accelerate the cooling rate of radiators. Raising the contact surface area is the 

guiding idea of this approach. Altering the present fin geometry or creating new ones can enhance the 

contact surface, which in turn improves the heat dissipation rate. Radiators with broad contact surfaces, 

such as round fins, exhibit the highest temperature decrease compared to those with sharp or box fins, 

and the use of nanofluids as a coolant further enhances this heat dissipation. Improved convection 

between the nanoparticles and the surfaces of the base liquid gives it a high thermal conductivity.  

 

The electronic controller for the cooling system was developed by Fatouh et al. [4]. The engine coolant 

temperature is controlled by the coolant flow rate and the speed of the radiator fan. The controller for 

the cooling system takes into account both linear quadratic regulation (LQR) and proportional integral 

derivative (PID) methods of control. The temperature of the engine's coolant can be adjusted using 

either the flow rate of coolant or the speed of the radiator fan. Depending on the engine load under 

various operating situations, to provide command control signals for the electric water pump and 

electric radiator fan.  

 

In order to characterise the performance of the heat exchanger and to evaluate the present state of 

temperature control, Jignesh and Chaudhari [5] describe the cross-flow heat exchanger experiment 

setup as a helpful tool for analysing various parameters of finned tube heat exchangers and for testing 

heat loss. In general, a finned tube heat exchanger allows for faster heat transfer rates than one without 

one.  

 

Problem Identification 

 

 High thermal stress and decreased engine efficiency result from insufficient heat removal from 

the engine.  

 It isn't the best cooling solution because it won't work in temperatures higher than 60 degrees 

Celsius.  

 Keep the cooling fan and pump running as little as possible.  

 Air contact surface decreases as contact surface area increases, resulting in subpar cooling.  

 Make the radiator's block core larger.  

 Tubes bent into a round profile.  

 The astronomically priced circular radiators require the production of dies.  
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Research Gap 

 

Many recent developments and investigations in engineering have focused on heat exchangers. A major 

breakthrough in engineering is also brought about by the analysis. As a result, we will be comparing 

heat exchangers manufactured of aluminium and copper using free and forced convection in our 

research. In order to find the heat transfer and total heat transfer coefficients, the log mean temperature 

difference (LMTD) approach was chosen. Compare the projected effectiveness from the NTU 

approach with the experimentally determined heat exchanger effectiveness [90-95]. However, no one 

has yet used finite element analysis to examine the materials. Now that we have done extensive research 

and study on the material, we can use finite element analysis to determine its mechanical and thermal 

properties (Figure 7).   

 

 

 

 

Figure 7: Fabrication process flow diagram 

 

Mathematical Equations of Cross-Flow Heat Exchanger 
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Experimental Work 

The thermal engineering laboratory of heat transfer in the mechanical engineering department of 

Dhaanish Ahmed College of Engineering designed and manufactured the cross-flow heat exchanger 

(Table 1).   

 

Table 1: Reading of Copper radiator under Forced convection 

 

No. of 

iteration 

Engine oil 

inlet 

Engine oil 

outlet 

Air inlet Air 

outlet 

Mass flow 

rate 

Engine oil 

flow 

velocity 

Airflow 

in °C in °C in °C in °C in Kg/s in m/s in m/s 

1 50 35.7 26.7 28.3 7.5×10-3 0.137 5 

2 71 56.9 28.14 30.4 0.0106 0.195 10 

3 100 77.5 30.2 32.9 0.0136 0.256 15 

4 125 109.7 31.4 33.8 0.01537 0.295 22 

There are two different method to determine the free and forced convection for 

aluminium and copper made heat exchanger. 

• FORCED CONVECTION: 

Heat transfer surface area, A = 0.03749 m2 

Cross-section area of the air inlet, Ac = 0.0319 m2 

 

Log mean temperature difference method: 

the heat transfer between two fluids can be calculated from: 

For Heat Transfer: 𝑄=𝐹𝑇𝑈𝐴Δ𝑇𝑙𝑚 

For heat transfer co-efficient: 

Bulk mean temperature Tm = 
Tmi+Tmo

 

2 

 
Reynolds number: Re = 

UD 
γ 

 
Nusselt number: Nu = 

hD 
k 

Log mean temperature difference method: 

(T1−t2)−(T2−t1) 
(T1−t2) ln 
(T2−t1) 

 

Xaxis value: P = 
t2−t1

 

T1−t1 

 
Curve value R: R = 

T1−T2 

t2−t1 

Effectiveness-NTU Method 

The effectiveness can be calculated form equation 

Effectiveness of heat exchanger: 

(∆T)m = 

𝛜 = 
T1 − T2 

T1 − t1 

Capacity rate of Engine oil (Hot fluid): 

𝐂h = ṁh × Cph 

Capacity rate of Air (Cold fluid): 𝐂c = ṁCCpC 

Cmin 
𝐂𝐮𝐫𝐯𝐞 

 
 

Cmax 

Number of Transfer Units: 𝐍𝐓𝐔 = 
UA

 
Cmin 

• FREE CONVECTION: 

the heat transfer between two fluids can be calculated from: For 

Heat Transfer: 𝑄=h𝐴Δ𝑇=h𝐴(Tw-T∞) 

Film Temperature: Tf = 
Tw+T∞ 

2 
 

𝛃 = 
1 

 
 

Tf in K 
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Heat transfer surface area, A = 0.03749 m2 

The cross-section area of the air inlet, Ac = 0.0319 m2 

 

To determine and verify the experimental heat transfer and engine oil temperature at the output, we 

have chosen to use a log mean temperature difference approach (Figure 8).  

 

 

𝛒=867.725kg/m3, 𝛄=7.77×10-3m2/s, k=0.1565W/m2k, Cp=2.346×103 J/kgk 

Reynolds number: Re = 
UD 

= .137×9×10-3/7.77×10-5 = 15.85 

γ 

Since Re<2300, Flow is laminar. 

 

For laminar flow, Nusselt number, Nu=3.66 

 

 

The Xaxis value is 0.06, and the curve value is 8.9375, the corresponding Yaxis value is 0.98, 

F = 0.98 

 

 

 

 
 

We know that, T1=50°C, T2=35.7°C, t1= 26.7°C,t2=28.3°C 

Bulk mean temperature, Tm = 
T1+T2

 

2 

 

Tm = 
50 + 35.7 

 

 

2 

= 42.85°C 

Effectiveness-NTU Method 

The effectiveness can be calculated form equation 

Effectiveness of heat exchanger: 

𝛜 = 
T1−T2 

= 
𝟓𝟎−𝟑𝟓.𝟕 

= 0.536
 

T1−t1 𝟓𝟎−𝟐𝟔.𝟕 

(From HMT data book Page No. 161 (Ninth Edition) 
 

Capacity rate of Engine oil (Hot fluid): 

Ch = ṁh × Cph 

= 7.548×10-3×2.546×103 =17.707W/k 

Capacity rate of Air (Cold fluid): Cc = ṁCCpC 

= 0.1768×1.007×103=178.0376 W/k 

Cmin = 17.707W/k, Cmax = 178.0376W/k 

(To find NTU, refer HMT data book Page No. 174 (cross flow) 
 

From graph, Yaxis = ɛ = 0.536 
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Figure 8:  Effectiveness – Cross-flow, Both fluids unmixed for the copper radiator. 

 

The corresponding Xaxis value is 0.89, NTU=0.89 

Number of Transfer Units: NTU = UA 

Cmin 

  

0.89 = U×0.03749 

17.707 

  

U = 420.35W/m2k 

 

For Heat Transfer: 𝑄=𝐹𝑇𝑈𝐴Δ𝑇𝑙𝑚 = 0.98×420.35×0.03749×14.4 = 222.389 W (Table 2). 

 

Table 2: Reading of Aluminum radiator under Forced convection 

 

No. of 

iteration 

Engine 

oil inlet 

Engine 

oil outlet 

Air inlet Air 

outlet 

Mass flow 

rate 

Engine 

oil flow 

velocity 

Airflow 

in °C in °C in °C in °C in Kg/s in m/s in m/s 

1 50 42.9 27.1 29.5 5.83×10-3 0.134 5 

2 71 64.3 29.3 30.9 9.114×10-3 0.213 10 

3 100 81.4 28.9 29.7 0.0123 0.294 15 

4 125 116.8 30.1 32.3 0.0148 0.359 22 

 

Heat transfer surface area, A = 0.04824 m2 

The cross-section area of the air inlet, Ac = 0.0423 m2 

 

In order to determine and verify the experimental heat transfer and engine oil temperature at the outlet, 

the log mean temperature difference approach has been chosen:  

NTU 
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Properties of Engine oil at 46.45°C: 

 

(From HMT data book Page No. 33 (Ninth Edition) 

 

𝛒=866.15kg/m3, 𝛄=6.97×10-5m2/s, k=0.155W/m2k, Cp=2.297×103J/Kgk 

 

 
 

Page 170 of the HMT data book (Ninth Edition) (Single-pass cross flow heat exchanger - Both fluids 

unmixed) contains the correction factor F.  

 

In order to resolve the analysis, we employ ANSYS 15. We begin by using the precise model 

dimensions to create the 3D geometry in Solidworks 13. Then, we proceed to add material data for the 

cross-flow heat exchanger made of aluminium and copper one by one. By utilising SOLIDWORKS, 

the precise proportions of the heat exchanger may be modelled by repurposing existing materials [96-

101]. Before being imported into Ansys Fluent for thermal analysis, the modelled cross-flow tubes and 

fins are built in Solidworks (Figures 9 and 10).   

Iteration1: 

We know that, T1=50°C, T2=42.9°C, t1= 27.1°C, t2=29.5°C 

Bulk mean temperature, Tm = 
T1+T2

 

2 

 

Tm = 
50 + 42.9 

 

 

2 

= 46.45°C 

Reynolds number: Re = 
UD 

= .134×9×10-3/6.97×10-5 = 15.36 
γ 

Since Re<2300, Flow is laminar. 

For laminar flow, Nusselt number, Nu=3.66 

(From HMT data book Page No. 132 (Ninth Edition) 

 

Nusselt number: Nu = 
hD 

k 

3.66=h×9×10-3/0.155 
 

Heat transfer Co-efficient, h=70.91W/m2k. 

This is cross flow, both fluids unmixed type heat exchanger 

 

𝑄=𝐹𝑇𝑈𝐴Δ𝑇𝑙𝑚 

(From HMT data book Page No. 160 (Ninth Edition) 

Log mean temperature difference method: 

 

(∆T)m = 
(T1−t2)−(T2−t1) 

= 
(50−29.5)−(42.9−27.1) 

= 18.04°C
 

(T1−t2) 
ln 

(T2−t1) 
ln 

(50−29.5) 

(42.9−27.1) 
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Figure 9: Copper tube radiator                                                           Figure 10: Aluminum tube 

radiator 

 

The Finite Element Method, a numerical approach, is used in Finite Element Analysis (FEA), which 

simulates any physical process (FEM).  An assembly's or part's behaviour under specified conditions 

can be predicted using finite element analysis (FEA). Modern simulation software is based on it, and 

engineers utilise it to uncover design weaknesses, tension points, and other issues. A colour scale that 

illustrates the distribution of pressure and temperature around the object, for example, is a common 

way to represent the results of FEA-based simulations. This study examines and presents the methods 

that was utilised to design the heat exchanger. As a result of  

As part of the design process, the pressure drops, surface area for heat transfer, and cross-flow and 

tube-side heat transfer coefficients must be determined. In order to assess the part's rigidity under 

design pressures, the mechanical design of the heat exchanger incorporates calculations of the part's 

thickness, including the cross-flow channel, tube, and so on [102-107]. The thermal analysis behaviour 

of heat exchangers constructed of copper and aluminium is investigated in the ANSYS simulation by 

means of repetitive cooling system applications. Vehicle dynamics are required to ascertain the 

temperature variation with respect to vehicle speed. On the other hand, this research contrasted the 

results of free and forced convection analyses for radiator tubes constructed of aluminium and copper. 

After that, we use ANSYS to study the heat exchanger model that we created in Pro-Engineer. Here, 

oil is considered the hot fluid and air, the cold fluid, as none of these states undergoes phase change. 

As the coolant velocity increases, so does the heat transfer coefficient and the pressure drop. As the 

fluid's velocity increases, the thickness of the temperature boundary layer on the tube decreases [108-

111]. A clear picture of the three-dimensional fluid flow can be obtained from flow trajectories, which 

display the flow streamlines.  

 

 

Figure 11: Heat transfer in

 copper 

Figure 12: Heat transfer in aluminum 

Radiator 
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Radiator 

The coolant flow temperatures at the intake and exit of the copper tube radiator are 380°K and 356.9°K, 

respectively, as shown in Figure 11. In the aluminium tube radiator, the corresponding temperatures 

are 379°K and 374°K, respectively, as shown in Figure 12.  

 

Result and Discussion 

 

The two fluids are kept separate as they flow at right angles to one another. As a result, heat is 

transferred from the coolant to the air. In cross-flow heat exchangers, this flow is used. As the coolant 

velocity increases, so does the heat transfer coefficient and the pressure drop. As the fluid's velocity 

increases, the thickness of the temperature boundary layer on the tube decreases. A clear picture of the 

three-dimensional fluid flow can be obtained from flow trajectories, which display the flow streamlines 

(Table 3).   

 

Table 3:  Results of Experimental Work in Copper and Aluminum Radiator 

 

 

 

 

Description 

 

 

Mate Real 

of Flow 

Tube 

 Results 

Iteration Heat 

Transfer 

Coefficien

t 

Overall Heat 

Transfer 

Coefficient 

 

Heat 

Trans Fer 

Rate 

 

Effectiveness 

in 

W/m2K 

in W/m2K in 

Watts 

 

 

Forced 

Convection 

 

Copper 

1 63.643 420.35 222.38 0.536 

2 60.59 301.436 380.65 0.328 

3 58.96 290.04 616.71 0.322 

4 57.34 280.22 907.09 0.16 

 

Aluminium 

1 70.91 111.026 93.72 0.31 

2 67.02 104.75 185.84 0.26 

3 66.33 95.5 276.58 0.1616 

4 64.5 90.3217 386.36 0.086 

 

Free  

Convection 

 

Copper 

1 63.44 406.812 218.06 0.545 

2 60.59 307.64 310.65 0.285 

3 58.96 294.1337 661.24 0.262 

4 57.34 239.178 789.02 0.124 

 1 70.22 87.6 78.54 0.227 

 Aluminum 2 67.893 104.97 193.02 0.215 

3 45.04 140.67 425.29 0.203 

4 42.15 144.145 638.72 0.0518 

 

Moreover, that occurred because an increase in velocity causes a rise in the Reynolds number, which 

in turn increases the quantity of air that comes into contact with the surface of the heat exchanger in 

order to lower the temperature. When Q=907.09Watma=0.6288kg/s, the maximum heat transfer 

occurs.  



138   A journal of the AMERICAN Journal of Engineering, Mechanics and Architecture            www. grnjournal.us  

 

 

 

 

 

Figure 13:  Relationship between heat transfer and mass flow rate of air with forced convection for 

Copper radiator 

 

Figure 13 demonstrates that when the mass flow rate of air rose, heat transfer increased, when the 

engine oil flow rate is 5.83×10-3Kg/s at Q=93.72 W. Moreover, that occurred because an increase in 

velocity causes a rise in the Reynolds number, which in turn increases the quantity of air that comes 

into contact with the surface of the heat exchanger in order to lower the temperature. P=0.833 kg/s 

yields a maximum heat transfer of Q=386.36 W.  

 

 
 

Figure 14: Relationship between heat transfer and mass flow rate of air with forced convection for 

Aluminum radiator 

 

The heat transfer increased as the mass flow rate of air rose, as shown in Figure 14, when the engine 

oil flow rate is 7.4×10-3Kg/s and Q=218.06 W. Moreover, that occurred because an increase in velocity 

causes a rise in the Reynolds number, which in turn increases the quantity of air that comes into contact 

with the surface of the heat exchanger in order to lower the temperature. At mass flow rate of 0.0377 

kg/s, the maximum heat transfer is Q=789.024 W.  
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Figure 15: Relationship between heat transfer and mass flow rate of air with free convection for 

Copper radiator 

 

A higher mass flow rate of air resulted in an increase in heat transfer, as seen in Figure 15, when the 

engine oil flow rate was 6.16×10-3Kg/s and Q=78.54 W. Moreover, that occurred because an increase 

in velocity causes a rise in the Reynolds number, which in turn increases the quantity of air that comes 

into contact with the surface of the heat exchanger in order to lower the temperature. When ma=0.05 

kg/s, the maximum heat transfer is 638.72 W.  

 

 

 

 

Figure 16:  Relationship between heat transfer and mass flow rate of air with free convection for 

Aluminum radiator 

 

As seen in Figure 16, the efficiency behaviour during the transfer of air mass is illustrated. The 

efficiency drops as the air mass flow rate rises, and Assuming an airflow rate (ma) of 0.1768 kg/s, the 

minimum efficacy is determined to be 53.6%. Because, depending on the effectiveness connection, the 
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mass flow rate of air is inversely related to the effectiveness, that is what transpired. When the airflow 

rate (ma) was 0.6288 kg/s, the minimum effectiveness was 16 percent.  

 

 
 

 

Figure 17: Relationship between effectiveness and mass flow rate with forced convection For Copper 

radiator 

 

We used forced convection to build a copper tube cross-flow heat exchanger in a two-wheeler vehicle 

so that we could regulate the temperature of the engine oil and keep the protective film of lubricating 

oil from degrading and losing its lubricating capabilities (Figure 17).  Heat exchangers can be found in 

many different types of machinery and appliances, including: boilers, condensers, evaporators, 

regenerators, oil coolers for heat engines, milk chillers in pasteurising facilities, radiators in 

automobiles, and many more industrial operations.  

 

Conclusion 

 

We find that the heat transfer rate is high when the copper tube radiator is subjected to forced 

convection, as shown by comparing the graphs obtained from the analysis with the free convection 

findings. The heat exchanger's efficiency in free convection with a copper tube radiator is improved by 

keeping an eye on the results of the thermal study. The structural analysis shows that heat exchangers 

operating under free convection have better heat dissipation characteristics than those operating under 

forced convection. The heat transfer and total heat transfer coefficients have been calculated using the 

log mean temperature difference approach, which is effective with respect to the fluid's inlet and outlet 

temperatures. Increasing the mass flow rate of air in structural analysis enhances heat transmission, as 

shown by this conclusion. More so, the efficacy diminishes as the air mass flow rate rises. In order to 

determine the rate of heat transfer, this study will compare and contrast current radiators. An Arduino 

screen, which shows the results of the tests on your computer, is a great addition to the lab. Consider 

utilising other heat exchangers. Gaining an understanding of the cooling engines you'll need, as well 

as the heat exchanger's efficiency and cooling capacity, is within your reach with this project.  
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