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1. Introduction

One of the important classes of Banach functional spaces are spaces Lp(Q,A, u), 1<p<ow
of all p-th power integrable measurable functions given on the measurable space (C2,A, 1)
with the finite measure 4 (almost everywhere equal functions are identified). The study of
isometries of Banach spaces Lp was initiated by S. Banach [1], who gave a description of all
isometries for spaces Lp[O,l], P+#2.In[2], J. Lamperti gave characterization of all linear
isometries for L -spaces Lp(Q,A,,u) where (€2,A, 1) is an arbitrary space with the finite
measure £« The final result in this setting is due to Yeadon [3] who gave a complete description
of all isometries between Lp -spaces associated with different measures. One of the corollaries
of such descriptions of isometries in spaces Lp(Q,A, 1) is the establishment of isometry for
L, -spaces Lp(Q,A,,u) and Lp(Q,A,v) in the case when the measures & and v are strictly
positive finite measures.

An important metrizable analogue of Banach spaces L are F -spaces L (A, 1) of log -
integrable measurable functions introduced in the work [4]. An F -space L _ (Q,A,u) is

defined by the equality
Log (A, 1) ={f € Ly(QA, 1) j|og(1+| f)d < +o0}
Q

log

log
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where L,(€2,A, ) is the algebra of all measurable functions given on (Q, A, ) (almost
everywhere equal functions are identified). By virtue of the inequality

IOg(f(w))S%f(a))p, weQ, pe[l,),

the inclusion Lp(Q,A,,u) c L. (QA, ) isalways true.

log

In [4], it was established that L, ,(€2,A, ) is a subalgebra in the algebra L,(Q,A, ). In

(QA, ),

log

addition, a special F -metric p(f,g) has been introduced in L,

p(f,9)= [ log(t+| f —gdu, f,g el (QA, ).

The pair (L, (€2, A, 1), p) is a complete metric topological vector space with respect to this
measure, and the operation of multiplication f - g is continuous in the totality of variables.

It is evident, algebras L,(Q,A, ) and L,(€,A,v) coincide when the measures 4 and v are
g (€2, A, 1) and
(Q,A,v) for strictly

strictly positive finite measures. This fact is no longer true for the algebras L
Loy (€2,A,v). In the work [S], it was shown that L, (€,A, 1) = L

log log

dv d
positive finite measures £z and v if and only if 9. el (A, u) and d—’u el (Q,A,v),
y7i 14
where L_(€Q,A, ) is the algebra of all essentially bounded measurable functions given on

d d
(Q, A\, 1) (almost everywhere equal functions are identified), d_v (respectively, d—‘u) is the
y7i 14

Radon-Nikodym derivation of the measure v (respectively, ££) with respect to the measure
(respectively, v).

Isometries on these F -spaces were considered in [6]. In these papers a description of isometries
on F -spaces was given. In contrast to these results, in this paper we establish a necessary and

sufficient condition for the existence of isometries and isomorphisms of algebras of log-
integrable functions constructed by different measures £ and v. The relationship between these

isometries and isomorphisms is also studied. In this case, conditions are imposed only on the
dv
Radon-Nikodym derivatives —.
du
Naturally the problem arises to find the necessary and sufficient conditions providing an
isomorphism of the algebras L., (€2,A, 1) and L, (€2,A,v) for the strictly positive finite
measures 4 and v. The solution of this problem is given in section 4.
The main purpose of this paper is to prove the absence of surjective isometries from
Liog (€Q,A, ) onto L, (Q,A,v) in the case when measures 4 and v are strictly positive
finite measures (see section 4).

log

2. Preliminaries

Let (Q,A, 1) be a be a complete measure space with finite measure £ and let L,(Q2,A, 1)
(respectively, L _(€,A,u)) be the algebra of equivalence classes of real valued measurable
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functions (respectively, essentially bounded real valued measurable functions) on (2, A, u).
Denote by V = Vﬂ the complete Boolean algebra of all equivalence classes € =[A], A€ A,

of equal g-almost everywhere sets from the o-algebra A. It is known that

(€)= u([A]) = u(A) is a strictly positive finite measure on V. In what follows, we also

denote the measure g by 44, and the algebra L,(€2,A, ) (respectively, L (€2,A,u)) by
Lo (V) = Ly (V,) (respectively, L (V) =L,(V ).

Following to [4], consider in L,(V ,) asubalgebra
Ly (V,) ={f € L(V,): [log(L+| f [)d pz < +oc}
Q

of l0og -integrable measurable functions, and for each f € L, (V ), set

log

PfP :_[Qlog(1+| f d .

log
By [4, Lemma 2.1], a nonnegative function P-R: L, (V) —[0,) isa F -norm, that is,
(i).PfP

log

(i). Paf P <P P

log log

>0 forall 0= f e L (V)

forall f el (V,) and real number o with | [<1;

log

(i) lim,_oPa f B,=0 forall f el (V,);
(iv).Pf+gP <PfP

og — log

+Pg Plog for all f,g € Llog(vy)'

In [4] it is shown that LIog v #) is a complete topological algebra with respect to the topology
generated by the metric p(f,g)=Pf —gh,, .

Let & and v be two strictly positive measures on the measurable space (€2,A). Then

L(V,)=L(M,)=LM), L(V,)=L,(V,)=L.(V).

dv
Let d_ be the Radon-Nikodym derivative of measure v with respect to the measure . It is
y7i

well known that 0 < dv € L, (V) and
du
dv
feL(QAV)S | -d—e L (Q,A, p),
U

in addition,

d
£fdvzz[ f -(ﬁ)dy.

. " _ dv., du
Note that for strictly positive measures £ and v, it follows that (d—) = d_
y7i 14
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d
If measure v is finite, then d—V e L,(V,) . This follows from the equality £(h) =v(1) <oo.
7

3 Isometries of the F -spaces L, (V,) and L (V,)

log

In this section, a necessary and sufficient condition for the existence of isometries is established
of L . (A, u)onto L (QA,v).

log log

dv
Let 12 and v strictly positive finite measures, h = d_ , and let
y7]

Ly(V,)={f e L(V,)PER=([I T dp)® <oo);

L,(V,) ={f e L(V,):PER,= ([ T dv)? = (Jh| f " dp)® <oc}.

In this case the map U 1L (V) > L (V) defined by the following equality
_1
U(f)=h"*f, felL (V,),

is the non trivial surjective isometry from L (V) onto L (V).

Bellow we show that this statement is not true for F -spaces L., (V) and L, (V).

log

Note that
Liog (V,) ={f € Ly(V): [log(1+| f ) dv < +oc} =
={f e LO(V):J'h-Iog((1+| f)du<+oo}=
={f e Ly(V): [log((1+] f ") d g < +oc}
and

P f Ry, = [log(L+] £ [)dv = [h-log((1+] f ) d g < +o0} =
Q Q

= [log((L+] ") da.
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Let V be a non-atomic complete Boolean algebra that is, a Boolean algebra V has not atoms.
Let V,={geV:g<e}, where 0eeV.By r(V,) denote the minimal cardinality of a

set that is dense in V_ with respect to the order topology ((0) -topology). The non-atomic
complete Boolean algebra V is said to be homogeneous if 7(V,)=7z(V ) for any nonzero

e,g € V. The cardinality 7(V) is called the weight of the homogeneous Boolean algebra V
(see, for example [7, chapter VII]).

Theorem 3.1 Let V be a complete homogeneous Boolean algebra, ¢ and v be finite strictly

j hd
positive measures on V. L, (V) isisometricto L, (V) iff 2 =1.
H(Q)
'[ hd i
Proof. Necessity is proved in [5], see Theorem 5. We prove sufficiency. Let £ © =1. Then
y7i

using the equality Ihd,u = Ih’lhdv =v(Q), where h™ = (;—’u we obtain v(Q) = 1(Q) .
1%
Q Q

Hence, there is a measure-preserving automorphism ¢« from Vﬂ onto V , ie.
u(€) =v(a(e)) for any eeV, ([7, chapter VII, Theorems 5 and 6]). Denote by J, the
isomorphism of the algebra L(V ) = L(V,) suchthat J(e) = a(e) forall eeV . That’s

why forany f e L, (V,), we have from ([5], Proposition 3)

log

P Ryy,= [log(l+] f (@) )du = [J,(log(1+] f (@) )dv =

og,v *

:J]og(l+ J, | f(@))dv =PI | f(w)P

Hence, the J , is a bijective linear isometry from L,

(Vﬂ) onto Ly, v,).

dv
Let h=— and
du

Q ={weQ:h(w)>1},Q. ={weQ:h(w) <1},Q_. ={wcQ:h(w) =1}=0Q\ (2, UQ).
Denote:
[ () -1)du [ 1=h(9)d

S.=S.(QQ,h) = > and S_=S_(Q,h) = 2 . The following
H(€2,) ML)
theorem establishes 5 conditions equivalent to the isometricity of F-spaces.
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Theorem 3.2 Let V be a complete homogeneous algebra, £ and v be finite strictly positive
measures on V, then the following conditions are equivalent

(1) Lg(V,)and L
Jh(w)dy

NS
-9

jh—l(w)dv

(iii). &———=1, where h™* = d_,u;
v(QQ) dv

(iv). v(€Q) = u(Y);
(v). S, =S_;

(vi). there is a measure-preserving automorphism o from V  onto V.

og (V) are isometric;

Proof. (i) < (il) follows from Theorem 1.

jh-l(a))dv _[h(a))h‘l(a))dy 0
(i) < (i) £ =2 -_HQ) =1. The reverse implication is
v(Q) Jdv Ih(a))dy

proved similarly.

jh—l(a))dv jh(w)h-l(w)dy

Ny Q ) _u(Q) _ _
(iif) < (iv) Q) = jdv = Q) =1le u(Q) =v()
(iv) < (vi) follows [8, chapter VII, Theorems 5 and 6]
(i) = (v)
Jh@da  [a@du Jdu (@ -Ddu ] O@)-Ddu
T M) M) w© M@ @)
J(h@)-Ddu [ (h(@)-1)du
2 +2= =S -S.<S, =S,
1(QL) u1(Q.)
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