

Isometries of *log* **-Integrable Functions**

Abdullaev R. Z.

Doctor of Physical and Mathematical Sciences, professor. Tashkent University of information Technologies

Madaminov B. A.

Doktor of Physical and Mathematical ciences (Phd). Non-government educational institution "Mamun University"

Abstract: In this paper studied isometries of F -spaces of integrable functions with logarithm. In the paper, it is given isomorphic classification of F -spaces of log -integrable measurable functions constructed using different measures. At the same time, it is proved that such spaces are non-isometric.

Keywords: Functional spaces; boolean algebras; complete boolean algebras; homogeneous Boolean algebras; internal log-algebras; external log-algebras; generalized log-algebras; isometries.

1. Introduction

One of the important classes of Banach functional spaces are spaces $L_p(\Omega, \mathbf{A}, \mu)$, $1 \le p < \infty$ of all p-th power integrable measurable functions given on the measurable space (Ω, A, μ) with the finite measure μ (almost everywhere equal functions are identified). The study of isometries of Banach spaces L_p was initiated by S. Banach [1], who gave a description of all isometries for spaces $L_p[0,1]$, $p \neq 2$. In [2], J. Lamperti gave characterization of all linear isometries for L_p -spaces $L_p(\Omega, A, \mu)$ where (Ω, A, μ) is an arbitrary space with the finite measure μ . The final result in this setting is due to Yeadon [3] who gave a complete description of all isometries between L_p -spaces associated with different measures. One of the corollaries of such descriptions of isometries in spaces $L_p(\Omega, A, \mu)$ is the establishment of isometry for L_p -spaces $L_p(\Omega, A, \mu)$ and $L_p(\Omega, A, \nu)$ in the case when the measures μ and ν are strictly positive finite measures.

An important metrizable analogue of Banach spaces L_p are F-spaces $L_{log}(\Omega, A, \mu)$ of log integrable measurable functions introduced in the work [4]. An F -space $L_{\text{log}}(\Omega, \mathbf{A}, \mu)$ is defined by the equality

$$
L_{\text{log}}(\Omega, \mathbf{A}, \mu) = \{ f \in L_0(\Omega, \mathbf{A}, \mu) : \int_{\Omega} \log(1 + |f|) d\mu < +\infty \}
$$

where $L_0(\Omega, A, \mu)$ is the algebra of all measurable functions given on (Ω, A, μ) (almost everywhere equal functions are identified). By virtue of the inequality

$$
\log(f(\omega)) \leq \frac{1}{p} f(\omega)^p, \omega \in \Omega, p \in [1, \infty),
$$

the inclusion $L_p(\Omega, \mathcal{A}, \mu) \subset L_{log}(\Omega, \mathcal{A}, \mu)$ is always true.

In [4], it was established that $L_{log}(\Omega, A, \mu)$ is a subalgebra in the algebra $L_0(\Omega, A, \mu)$. In addition, a special F -metric $\rho(f, g)$ has been introduced in $L_{log}(\Omega, A, \mu)$,

$$
\rho(f,g) = \int_{\Omega} \log(1+|f-g|) d\mu, f, g \in L_{\log}(\Omega, A, \mu).
$$

The pair $(L_{log}(\Omega, A, \mu), \rho)$ is a complete metric topological vector space with respect to this measure, and the operation of multiplication $f \cdot g$ is continuous in the totality of variables.

It is evident, algebras $L_0(\Omega, A, \mu)$ and $L_0(\Omega, A, \nu)$ coincide when the measures μ and ν are strictly positive finite measures. This fact is no longer true for the algebras $L_{log}(\Omega, A, \mu)$ and $L_{log}(\Omega, A, \nu)$. In the work [5], it was shown that $L_{log}(\Omega, A, \mu) = L_{log}(\Omega, A, \nu)$ for strictly positive finite measures μ and ν if and only if $\frac{d\nu}{d\mu} \in L_{\infty}(\Omega, \mathcal{A}, \mu)$ *d* $!{\mathcal V}$ μ μ $\epsilon \in L_{\infty}(\Omega, \mathcal{A}, \mu)$ and $\frac{d\mu}{d\mu} \in L_{\infty}(\Omega, \mathcal{A}, \nu)$, *d* $\frac{\mu}{\epsilon} \in L(\Omega, A, \nu)$ $!{\cal V}$ $\in L_{_{\infty}}(\Omega,\mathsf{A}% _{\infty}^{\ast})\simeq1\,\text{.} \label{eq:4.14}%$ where $L_{\infty}(\Omega, A, \mu)$ is the algebra of all essentially bounded measurable functions given on (Ω, A, μ) (almost everywhere equal functions are identified), *d d* $!{\mathcal V}$ μ (respectively, *d d* μ !ν) is the Radon-Nikodym derivation of the measure V (respectively, μ) with respect to the measure μ (respectively, V).

Isometries on these F -spaces were considered in [6]. In these papers a description of isometries on *F* -spaces was given. In contrast to these results, in this paper we establish a necessary and sufficient condition for the existence of isometries and isomorphisms of algebras of logintegrable functions constructed by different measures μ and ν . The relationship between these isometries and isomorphisms is also studied. In this case, conditions are imposed only on the

Radon-Nikodym derivatives $\frac{d\mathbf{r}}{d\mathbf{r}}$. *d d* $\mathcal V$ μ

Naturally the problem arises to find the necessary and sufficient conditions providing an isomorphism of the algebras $L_{log}(\Omega, A, \mu)$ and $L_{log}(\Omega, A, \nu)$ for the strictly positive finite measures μ and ν . The solution of this problem is given in section 4.

The main purpose of this paper is to prove the absence of surjective isometries from $L_{log}(\Omega, A, \mu)$ onto $L_{log}(\Omega, A, \nu)$ in the case when measures μ and ν are strictly positive finite measures (see section 4).

2. Preliminaries

Let (Ω, A, μ) be a be a complete measure space with finite measure μ and let $L_0(\Omega, A, \mu)$ (respectively, $L_{\infty}(\Omega, A, \mu)$) be the algebra of equivalence classes of real valued measurable functions (respectively, essentially bounded real valued measurable functions) on (Ω, A, μ) . Denote by $\nabla = \nabla_{\mu}$ the complete Boolean algebra of all equivalence classes $e = [A]$, $A \in A$, of equal μ -almost everywhere sets from the σ -algebra A. It is known that $\mu(e) = \mu([A]) = \mu(A)$ is a strictly positive finite measure on ∇_{μ} . In what follows, we also denote the measure μ by μ , and the algebra $L_0(\Omega, A, \mu)$ (respectively, $L_\infty(\Omega, A, \mu)$) by $L_0(\nabla) = L_0(\nabla_\mu)$ (respectively, $L_\infty(\nabla) = L_\infty(\nabla_\mu)$).

Following to [4], consider in $L_0(\nabla_\mu)$ a subalgebra

$$
L_{\text{log}}(\nabla_{\mu}) = \{ f \in L_0(\nabla_{\mu}) : \int_{\Omega} \log(1 + |f|) d\mu < +\infty \}
$$

of log -integrable measurable functions, and for each $f \in L_{log}(\nabla_{\mu})$, set

$$
P f P_{\text{log}} = \int_{\Omega} \log(1+|f|) d\mu.
$$

By [4, Lemma 2.1], a nonnegative function $P \cdot P_{log}: L_{log}(\nabla_{\mu}) \to [0, \infty)$ is a F-norm, that is,

- (i) . $P f P_{log} > 0$ for all $0 \neq f \in L_{log}(\nabla_{\mu});$
- (iii) . $P\alpha f P_{log} \triangle P f P_{log}$ for all $f \in L_{log}(\nabla_{\mu})$ and real number α with $|\alpha| \leq 1$;
- (iii) . $\lim_{\alpha\to 0} P\alpha f P_{log} = 0$ for all $f \in L_{log}(\nabla_{\mu})$;
- (iv) . $P f + g P_{log} \mathcal{L} P f P_{log} + P g P_{log}$ for all $f, g \in L_{log}(\nabla_{\mu})$.

In [4] it is shown that $L_{log}(\nabla_{\mu})$ is a complete topological algebra with respect to the topology generated by the metric $\rho(f, g) = Pf - gP_{log}$.

Let μ and ν be two strictly positive measures on the measurable space (Ω, A) . Then

$$
L_0(\nabla_\mu) = L_0(\nabla_\nu) = L_0(\nabla), \ L_\infty(\nabla_\mu) = L_\infty(\nabla_\nu) = L_\infty(\nabla).
$$

Let *d d* $\mathcal V$ μ be the Radon-Nikodym derivative of measure ν with respect to the measure μ . It is

well known that $0 \leq \frac{dV}{dL} \in L_0(\nabla)$ *d* $!{\mathcal V}$ μ $\leq \frac{\ldots}{\cdot} \in L_0(\nabla)$ and

$$
f \in L_1(\Omega, \mathcal{A}, \nu) \Longleftrightarrow f \cdot \frac{d\nu}{d\mu} \in L_1(\Omega, \mathcal{A}, \mu),
$$

in addition,

$$
\int_{\Omega} f \, d\nu = \int_{\Omega} f \cdot \left(\frac{d\nu}{d\,\mu}\right) d\,\mu.
$$

Note that for strictly positive measures μ and ν , it follows that $\left(\frac{d\nu}{d}\right)^{-1} = \frac{d\mu}{d\mu}$. *d d* $dV_{\gamma-1}$ $d\mu$ μ dv

If measure *v* is finite, then $\frac{dv}{dx} \in L_1(\nabla_\mu)$ $d\mu$ ⁻⁻¹ \cdot ^{μ} $\mathcal V$ μ $\in L_1(\nabla_{\mu})$. This follows from the equality $\mu(h) = \nu(1) < \infty$. 3 Isometries of the F-spaces $L_{\text{log}}(\nabla_{\mu})$ and $L_{\text{log}}(\nabla_{\nu})$

In this section, a necessary and sufficient condition for the existence of isometries is established of $L_{log}(\Omega, \mathcal{A}, \mu)$ onto $L_{log}(\Omega, \mathcal{A}, \nu)$.

Let μ and ν strictly positive finite measures, $h =$ *d h d* $!{\mathcal V}$ μ , and let

$$
L_p(\nabla_\mu) = \{ f \in L_0(\nabla_\mu) : P f P_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}} < \infty \};
$$

$$
L_p(\nabla_\mu) = \{ f \in L_0(\nabla_\mu) : P f P_p = (\int_{\Omega} |f|^{p} d\mu)^{\overline{p}} < \infty \};
$$

$$
L_p(\nabla_\nu) = \{ f \in L_0(\nabla_\nu) : P f P_p = (\int_{\Omega} |f|^{p} d\nu)^{\frac{1}{p}} = (\int_{\Omega} h \cdot |f|^{p} d\mu)^{\frac{1}{p}} < \infty \}.
$$

In this case the map $U: L_p(\nabla_\mu) \to L_p(\nabla_\nu)$, defined by the following equality

$$
U(f) = h^{\frac{1}{p}} f, f \in L_p(\nabla_\mu),
$$

is the non trivial surjective isometry from $L_p(\nabla_\mu)$ onto $L_p(\nabla_\nu)$.

Bellow we show that this statement is not true for F-spaces $L_{\text{log}}(\nabla_{\mu})$ and $L_{\text{log}}(\nabla_{\nu})$. Note that

$$
L_{\text{log}}(\nabla_{\nu}) = \{ f \in L_0(\nabla) : \int_{\Omega} \log(1 + |f|) d\nu < +\infty \} =
$$

$$
= \{f \in L_0(\nabla) : \int_{\Omega} h \cdot \log((1+|f|)) d\mu < +\infty\} =
$$

$$
= \{ f \in L_0(\nabla) : \int_{\Omega} \log((1+|f|)^h) d\mu < +\infty \}
$$

and

$$
P f P_{log,v} = \int_{\Omega} log(1+|f|) dv = \int_{\Omega} h \cdot log((1+|f|) d\mu < +\infty) =
$$

$$
= \int_{\Omega} \log((1+|f|)^h) \, d\mu.
$$

Let ∇ be a non-atomic complete Boolean algebra that is, a Boolean algebra ∇ has not atoms. Let $\nabla_e = \{ g \in \nabla : g \leq e \}$, where $0 \neq e \in \nabla$. By $\tau(\nabla_e)$ denote the minimal cardinality of a set that is dense in ∇_e with respect to the order topology ((*o*)-topology). The non-atomic complete Boolean algebra ∇ is said to be *homogeneous* if $\tau(\nabla_g) = \tau(\nabla_g)$ for any nonzero $e, g \in \nabla$. The cardinality $\tau(\nabla)$ is called the *weight* of the homogeneous Boolean algebra ∇ (see, for example [7, chapter VII]).

Theorem 3.1 Let ∇ be a complete homogeneous Boolean algebra, μ and ν be finite strictly positive measures on ∇ . $L_{log}(\nabla_{\mu})$ is isometric to $L_{log}(\nabla_{\nu})$ iff $\frac{\Omega}{\Omega} = 1$. (Ω) *hd* Ω Ω ∫

 μ

Proof. Necessity is proved in [5], see Theorem 5. We prove sufficiency. Let $\frac{\Omega}{\Omega} = 1$ (Ω) *hd* μ Ω Ω \int . Then using the equality $\left| hd\mu = \left| h^{-1}hd\nu \right| = \nu(\Omega)$, ¹*l*₂*d*₁*i* = μ ⁽C) = μ ₁*i* = d *µ*^{*i*} $\int_{\Omega} h d\mu = \int_{\Omega} h^{-1} h d\nu = \nu(\Omega)$, where $h^{-1} =$ *d* , we obtain $V(\Omega) = \mu(\Omega)$. Hence, there is a measure-preserving automorphism α from ∇_{μ} onto ∇_{ν} , i.e. $\mu(e) = \nu(\alpha(e))$ for any $e \in \nabla_{\mu}$ ([7, chapter VII, Theorems 5 and 6]). Denote by J_{α} the isomorphism of the algebra $L_0(\nabla_\mu) = L_0(\nabla_\nu)$ such that $J_\alpha(e) = \alpha(e)$ for all $e \in \nabla_\mu$. That's why for any $f \in L_{log}(\nabla_{\mu})$, we have from ([5], Proposition 3)

$$
P f P_{\log,\mu} = \int_{\Omega} \log(1+|f(\omega)|) d\mu = \int_{\Omega} J_{\alpha} (\log(1+|f(\omega)|)) d\nu =
$$

=
$$
\int_{\Omega} \log(1+J_{\alpha}|f(\omega)|) d\nu = P J_{\alpha}|f(\omega) P_{\log,\nu}.
$$

Hence, the J_α is a bijective linear isometry from $L_{log}(\nabla_\mu)$ onto $L_{log}(\nabla_\nu)$.

Let
$$
h = \frac{dv}{d\mu}
$$
 and
\n
$$
\Omega_{\geq} = {\omega \in \Omega : h(\omega) > 1}, \Omega_{\geq} = {\omega \in \Omega : h(\omega) < 1}, \Omega_{\geq} = {\omega \in \Omega : h(\omega) = 1} = \Omega \setminus (\Omega_{\geq} \cup \Omega_{\geq}).
$$
\nDenote:

$$
S_{>} = S_{>}(\Omega, h) = \frac{\int_{\Omega} (h(x) - 1) d\mu}{\mu(\Omega_{>})}
$$
 and $S_{\leq} = S_{\leq}(\Omega, h) = \frac{\int_{\Omega_{\leq}} (1 - h(x)) d\mu}{\mu(\Omega_{\leq})}$. The following

theorem establishes 5 conditions equivalent to the isometricity of F-spaces.

176 **Journal of Engineering, Mechanics and Architecture** www. *grnjournal.us*

Theorem 3.2 Let ∇ be a complete homogeneous algebra, μ and ν be finite strictly positive measures on $\nabla,$ then the following conditions are equivalent

(i).
$$
L_{log}(\nabla_{\mu})
$$
 and $L_{log}(\nabla_{\nu})$ are isometric;
\n
$$
\int h(\omega) d\mu
$$
\n(ii). $\frac{\Omega}{\mu(\Omega)} = 1$;
\n
$$
\int h^{-1}(\omega) d\nu
$$
\n(iii). $\frac{\Omega}{\nu(\Omega)} = 1$, where $h^{-1} = \frac{d\mu}{d\nu}$;
\n(iv). $\nu(\Omega) = \mu(\Omega)$;
\n(v). $S_{>} = S_{<}$;
\n(vi) there is a measure preserving automor

(*vi*). there is a measure-preserving automorphism α from ∇_{μ} onto ∇_{ν} .

Proof. $(i) \Leftrightarrow (ii)$ follows from Theorem 1.

$$
(ii) \Leftrightarrow (iii) \frac{\int h^{-1}(\omega)d\nu}{\nu(\Omega)} = \frac{\int h(\omega)h^{-1}(\omega)d\mu}{\int_{\Omega} d\nu} = \frac{\mu(\Omega)}{\int_{\Omega} h(\omega)d\mu} = 1.
$$
 The reverse implication is

proved similarly.

$$
(iii) \Leftrightarrow (iv) \frac{\int_{\Omega} h^{-1}(\omega) d\nu}{\nu(\Omega)} = \frac{\int_{\Omega} h(\omega) h^{-1}(\omega) d\mu}{\int_{\Omega} d\nu} = \frac{\mu(\Omega)}{\nu(\Omega)} = 1 \Leftrightarrow \mu(\Omega) = \nu(\Omega)
$$

 $(iv) \Leftrightarrow (vi)$ follows [8, chapter VII, Theorems 5 and 6]

$$
(ii) \Leftrightarrow (v)
$$

$$
0 = \frac{\int h(\omega)d\mu}{\mu(\Omega)} - 1 = \frac{\int h(\omega)d\mu}{\mu(\Omega)} - \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} = \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} - \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} = \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} + \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} - \frac{\int h(\omega)-1d\mu}{\mu(\Omega)} = S_{0} - S_{0} \Leftrightarrow S_{0} = S_{0}
$$

References

- 1. S. Banach S, *Theorie des operations lineaires. Warsaw*, 1932.
- 2. J. Lamperti, *On the isometries of some function spaces*. Pacific J. Math., **8** (1958), 459–466.
- 3. F.J. Yeadon, *Isometries of non-commutative Lp -spaces*. Math. Proc.Camb. Phil. Soc. 90 (1981) 41-50.
- 4. K. Dykema, F. Sukochev, D. Zanin, *Algebras of log-integrable functions and operators*. Complex Anal. Oper. Theory **10** (8) (2016), 1775–1787.
- 5. R.Z. Abdullaev, V.I. Chilin, *Isomorphic Classification of -Algebras of Log-Integrable Measurable Functions*. Algebra, Complex Analysis, and Pluripotential Theory. USUZCAMP 2017. Springer Proceedings in Mathematics and Statistics, **264**, 73-83. Springer, Cham.
- 6. R.Abdullaev, V.Chilin, B.Madaminov *Isometric F-spaces of log-integrable function.* Siberian Electronic Mathematical Reports. том 17,стр. 218-226(2020).
- 7. D.A. Vladimirov, *Boolean Algebras in Analysis*. Mathematics and its Applications, **540**, Kluwer Academic Publishers, Dordrecht (2002).