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Introduction 

Modern methods of calculating the torsional vibrations of the shafts of djinn machines make it 

possible to determine, with a greater or lesser degree of accuracy, those additional twisting 

stresses that will occur in the shaft when djinn machines are operating at any of its critical 

speeds, under conditions of precise torsional resonance. The criterion for the presence of this 

resonance is considered to be the coincidence of the angular ηh frequency of the resonating 

torque harmonics on the shaft of the washing machines with one of the angular frequencies ω0 of 

the natural torsional vibrations of the shaft of the investigated installation. 

Relationship: 

  
  

  
, 

Hereinafter referred to as the tuning coefficient, it receives a value of     under resonance 

conditions. 

An external sign of the resonant nature of the oscillatory process is usually an intensive increase 

in the amplitudes of forced oscillations. Such an increase, or development of amplitudes, 

continues until the energy input in the oscillating system due to the excitation work performed by 

resonating harmonic torques is equal to its consumption due to the presence of damping forces in 

the installation. The maximum resonant amplitude of the oscillation is determined from the 

equality of these works for each oscillation cycle. It is this limiting amplitude that is given by the 

currently known methods of calculating the resonant vibrations of the shafts of washing 

machines [3.15, 17, 18]. 

But such "favorable" (for the development of vibrations) ideal conditions for a sufficiently long 

operation of the installation at exactly the pm value of the tuning coefficient     are 

essentially never implemented in practice, since in actual power plants from washing machines 

both ηh and ω0 are always variable. 
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The angular frequency ηh of the harmonic torque          is related to the angular velocity of 

rotation of the shaft η and the order h of this moment by the ratio: 

      

Thus, ηh is constant in time only under the condition          

In general, in the dynamic study of installations from washing machines, it is necessary to 

distinguish: 

a) the average (imaginary or conditional) angular velocity η0 of the rotation of the shaft of the 

jinny machines; 

b) the instantaneous angular velocity ηs of the rotation of the genie shaft, when this shaft, 

together with all the shafts of the installation, is considered as an absolutely rigid (twisting) 

body; 

c) the true instantaneous speed ηi of rotation of any particular section of the shaft. 

The average angular velocity η0 is determined by the formula: 

   
  

  
       

After a minute, the number of n washing machines, measured, total counters. The speed of η0 is 

usually constant with a constant load on the washing machines and its constant adjustment. 

The instantaneous velocity ηi is continuously changing due to the inequality between the 

instantaneous value of the variable torque on the shaft of the washing machines and the moment 

of the external load.A specific value of ηi for each moment of time can be found, for example, 

using the well-known Wittenbauer method. Fluctuations in this speed depend on the nature of the 

total diagram of tangential forces on the shaft of the washing machines and the law of change of 

the moment of the external load along the angle of rotation of the shaft. 

Obviously, ηi can also be called the instantaneous rotation speed of the shaft of the jinn 

machines, i.e., all its sections and all the masses rotating with it. 

The true instantaneous angular velocity ηi due to torsional vibrations of the shaft line is not only 

variable in time, but also varies along the length of the installation shaft. The velocities ηi are 

analytically determined only by a detailed calculation of the torsional vibrations of the shaft line 

and the construction of a torsion diagram for each section of the shaft we are interested in 

separately. 

The relative magnitude of the velocity fluctuations ns and ηi during one cycle of the shaft 

operation is characterized, respectively, by the expressions: 

   
           

  
, 

   
           

  
 

The value    is the "rigid" degree of unevenness, or, as it is often called, the stem of the 

unevenness of the flywheel, is calculated using a well–known method, assuming the absolute 

rigidity of the shaft of the twisting installation. Naturally,    is the same for all shaft sections. 

The value   , to which we will assign the name of the "elastic" (or true) degree of unevenness, is 

no longer the same for different shaft sections. Experimentally,    can be found using torsion 

mapping of the section (or, more precisely, the section) of the shaft of interest to us. 

The "hard" degree of unevenness    corresponding to the so-called nodeless vibrations of the 

shaft enters    through vibrations caused by the main orders of torque harmonics, far from 

resonance, if by this    we mean the full degree of unevenness due to the effect on the shaft of 
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the entire harmonic spectrum, the torque of the washing machines and the moment of external 

load. 

All generally accepted methods for calculating shaft vibrations, especially forced vibrations, 

involve replacing all masses variably involved in the oscillatory process with rotating masses 

with a constant moment of inertia. In fact, as is known, the moment of inertia of the diamond 

saws reduced to the radius is α periodic function of the angle of rotation of the shaft. 

Accordingly, the frequency of natural oscillations of the shaft line changes periodically in the 

range from some from      to     . Here it is advisable to introduce the concept of an 

"internal" degree of unevenness: 

   
         

  
 

and characterizing the range of oscillations (pulsations) of the natural oscillation frequency 

relative to its average value   . The frequency of these natural frequency pulsations depends 

both on the rotation speed of the genie shaft and on the number of genie saws inserted on it and 

their relative position. 

In contrast to the "internal" degree of unevenness   , which is entirely conditioned by the basic 

properties of the oscillating system itself, it is possible to assign the values    and    the name of 

"external" degrees of unevenness (respectively "rigid" and "elastic"), since the latter are 

essentially determined by external forces acting on the system. 

In any installation of the shafts of washing machines, continuous vibrations of η and ω0 

(characterized by degrees of inequality   ,    and   ) all the time deviate the system from that 

state of a stationary oscillatory process, which is only considered by the usual theory of 

harmonic vibrations. A similar phenomenon occurs when the installation is running at any of its 

critical speeds. 

It seems quite obvious that such a permanent violation of the resonant oscillatory process in the 

shaft due to external and internal unevenness (  ,    and   ) and excludes the possibility of 

developing those resonant amplitudes and stresses that are calculated by the usual method 

assuming          . 

With an increase in δ, additional, so-called apparent or dynamic damping increases in the 

oscillating system. At the same time, unlike actual damping (for example, internal friction on the 

shaft, friction in bearings, etc.), dynamic damping is not associated, at least mainly, with energy 

dissipation. 

However, the issue of dynamic damping of torsional vibrations has hardly been developed. 

Analytical accounting of the degree of unevenness (external and internal) by the magnitude of 

the resonant amplitudes by the magnitude of the resonant vibration amplitudes of the shafts can 

currently be performed only using the well-known Mansi formula [14]. 

This formula, attractive for its simplicity and clarity, is quoted in many works on the theory of 

vibrations by the outfit of the authors [1, 4, 10, 11, 12] and is recommended for use in 

computational practice. But there is no consensus on the interpretation of the Mansi formula and 

in assessing the degree of its accuracy. Its fundamental grounds cannot be considered 

convincing. Moreover, a critical analysis of the Mansi formula and some related views on the 

effect of dynamic damping force us to recognize it as clearly unsatisfactory [5].  

Its application can lead to serious errors not only in the quantitative, but also in the qualitative 

assessment of those dynamic processes that play out in the shaft line of the power plant of 

washing machines. 

The purpose of this work is to carry out a detailed analysis of the influence of the uneven 

rotation of the shaft of jinny machines on the nature and development of resonant and non-
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resonant vibrations in it, as well as to establish the true effect of dynamic damping caused by this 

unevenness. 

When studying shaft vibration, it is necessary to keep in mind the fundamental difference 

between the "external" (  ,  ) and "internal" (  ) degrees of unevenness in the installations of 

washing machines.  

The "internal" unevenness (    ) caused by periodic changes in the moments of inertia of the 

reduced gin masses is entirely related to the main characteristics of the installation. Here, the 

reduction system, at least at not too small   , loses the properties of a harmonic resonator, and its 

vibrations acquire a quasi-harmonic character. 

The "external" illegality (  ,  ), that is, the uneven rotation of the shaft, does not make such 

significant changes to the oscillating system, which, as in the ideal case (  = 0), under some of 

the restrictions listed below, can usually be described by linear differential equations with 

constant coefficients. Thus, when studying vibrations of installations with constant reduced 

masses (     ) having      (and, to a certain extent,     ), we still have the opportunity to 

use the entire basic apparatus of the theory of harmonic oscillations with its spectral approach to 

analyzing the effect of complex periodic excitation. 

In real oscillatory systems, such as the installations of laser machines, there are usually 

simultaneously      and      or, more precisely,      and        However, the study of 

vibrations in these conditions presents exceptional difficulties. 

We will limit ourselves here only to analyzing the case       , in order to identify in its pure 

form, the effect of the presence of      (or     ) in a linear system, and thereby establish the 

specific value of the uneven rotation of the shaft as a factor of dynamic damping of torsional 

vibrations in the installation of washing machines. 

According to the location, each saw blade creates a variable torque on the shaft     , the value 

of which, at any angle of rotation of the shaft α, can be determined by conventional methods, 

according to the indicator diagram. According to the data obtained in this way, the      curve is 

built in the function α, which has, depending on the position of the shaft, a period of 2π or 4 π. 

According to the data obtained in this way, the      curve is built in the function α, which has, 

depending on the position of the shaft, a period of 2π or 4 π. 

The harmonic analysis of this curve, which, as a rule, always satisfies Dirichlet conditions, 

allows us to represent the torque of one saw blade as a trigonometric series: 

       ∑       
 
     ∑       

 
        ∑      (     )

 
   ,    

    (1) 

(h =1, 2, 3, …) 

М0 – the constant component of the torque     , 

Мh – the amplitude of the harmonic moment (or, in short, the amplitude of the harmonic) h – the 

order determined by the formula: 

   √  
    

  

   - the phase angle of this harmonic, calculated by the formula: 

        
  

  
⁄  

and characterizing the position of the vector    relative to the position of the shaft at the 

moment corresponding to α = 0. 
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In the future, for the sake of simplicity of all calculations, we will consider only the position of 

the shaft. 

The angle of rotation of the shaft α is related to time t by an obvious ratio: 

  ∫    
 

 
,      (2) 

where η is the instantaneous angular velocity of the shaft rotation. Now from (1): 

       ∑      ( ∫    
 

 
) 

    ∑      ( ∫    
 

 
) 

    

   ∑      (( ∫    
 

 
)    )

 
   ,  (3) 

In the generally accepted methods for calculating shaft vibrations, a direct proportionality 

between α and t is assumed: 

     ,      (4) 

where    obviously represents some average angular velocity of rotation of the shaft over the 

entire considered time interval, that is, at least for the duration of one cycle of the shaft's working 

process. 

The stand (4) in (1) gives the usual spectral representation of the torque     in the form of a sum 

of elementary moments (harmonics), each of which is considered as a simple harmonic function 

of time 

       ∑       
 
       ∑          

 
       ∑      (       )

 
   ,  (5) 

Here, all   ,   ,   ,    ɛh are considered constant, independent of time. But this assumption is 

the less true, the less stable the mode of operation of the washing machines and, as will be shown 

below, the greater the unevenness of the shaft rotation. 

At constant load on the shaft of the washing machines, the accuracy of the series (5), as a 

characteristic of the true (i.e. harmonic time) torque spectrum    , is entirely determined by the 

errors of the ratio (4), on the basis of which, as a result of a purely geometric (i.e. without taking 

into account the time factor) harmonic analysis of the curve       ( ) time is entered and a 

number (5) is obtained. 

It is obvious that in all real practice tasks: 

        

А, следовательно, ряд (1) переходит в (3), где каждый слагаемое вида: 

(   )    ( ∫       ) ,    (6) 

It turns out to be often a very complex function of time t. 

Thus, the "geometric" harmonic analysis of the curve       ( ), the results of which are 

recorded in the form of an ordinary series (1), still does not answer the question of the specific 

characteristics of the harmonic torque spectrum    , the components of which, under the 

conditions of the study of forced vibrations of linear systems with constant parameters, must be 

pure there are many harmonic functions of time. To directly obtain these multi-harmonic torque 

components, it would be necessary to conduct a harmonic analysis of the     curve, constructed 

as a function of time t. 
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Fig.1. Synchronous modulation with phase    

 ⁄  the amplitude of the moment    value 

increases with increasing modulation amplitudes 

However, the construction of such a curve, at least at the beginning of calculations of shaft 

vibrations, presents insurmountable difficulties, since the dependence of    on t. is not 

sufficiently known in advance. 

In addition, the curve       ( ) has a well-defined physical meaning, since the main thermal 

processes occurring in the working process of the collision of the saw blade with the raw 

material are not so much an explicit function of time, that is, the angle of rotation of the shaft. 

Finally, it simply does not make sense to refuse to use the results of large computational work on 

the harmonic analysis of typical torque diagrams conducted by a number of researchers [3,10, 

15] and presented either in the form of graphs or tables, giving specific values of the harmonic 

coefficients 
   

  
 (where F is the area of the diamond saw). The use of such graphs facilitates the 

work of the designer, since it frees him from the need to perform painstaking calculations on the 

harmonic analysis of the     curve every time. 

Thus, it is still advisable to start our study with a series (1), each component of which: 

(   )=     (     )=     ( ∫       
 

 
),   (7) 

It represents a simple harmonic function α and, at the same time, a complex modeled (as usual, 

under modulation, the introduction of any special, special periodic deviations into a purely 

sinusoidal oscillatory process) function of time t. 

 
Fig.2. Synchronous-synphase modulation, when the modulation frequency is equal to the 

carrier frequency    
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In accordance with the accepted definitions and terminology (6), we will distinguish the 

following main types of modulation. Here: 

          , 

         

That is 

       

and 

(  )  =     (       ), (8) 

where the amplitude of the moment    is variable in time. The degree of deviation (  ) from a 

purely sinusoidal function t is determined by the nature of the changes in t. amplitude   . 

 

Fig.3. Of the sinusoidal function, the amplitude of the moment    by time changes t 

Phase modulation, or phase modulation, characterized by conditions: 

          , 

        ,  

and the phase angle    - varies depending on time. It is easy to show that phase modulation is 

similar to frequency modulation. Frequency modulation through the variable rotation speed of 

the vector   , obviously, inevitably leads to changes in    and therefore is simultaneously phase 

modulation. In view of this, it is not particularly necessary to consider phase modulation. 

Mixed modulation, - when    and   are time variables. Such differentiation of the     

components is advisable already with the usual analysis of shaft vibrations of installations 

operating in a wide range of revolutions. It is especially necessary in our study, since cyclic 
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fluctuations in the angular velocity of the shaft rotation change the magnitude of the inertia 

forces accordingly. 

At        , the inertial harmonics are easily calculated analytically, according to the well-

known formulas (5). This allows us to use a torque curve based on an indicator diagram without 

taking into account inertia forces for conducting harmonic analysis.But, of course, in the final 

results of this analysis, that is, in all    and    included in series (1), in the future it is necessary 

to take into account the amplitudes and phases of inertial harmonics accordingly. 
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